Accelerating Restricted Diffusion NMR Studies with Time-Resolved and Ultrafast Methods.
Journal
Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536
Informations de publication
Date de publication:
21 07 2020
21 07 2020
Historique:
pubmed:
20
6
2020
medline:
20
6
2020
entrez:
20
6
2020
Statut:
ppublish
Résumé
Restricted diffusion of fluids in porous materials can be studied by pulsed field gradient nuclear magnetic resonance (NMR) non-invasively and without tracers. If the experiment is repeated many times with varying diffusion delays, detailed information about pore sizes and tortuosity can be recorded. However, the measurements are very time-consuming because numerous repetitions are needed for gradient ramping and varying diffusion delays. In this paper, we demonstrate two different strategies for acceleration of the restricted diffusion NMR measurements: time-resolved diffusion NMR and ultrafast Laplace NMR. The former is based on time-resolved non-uniform sampling, while the latter relies on spatial encoding of two-dimensional data. Both techniques allow similar 1-2 order of magnitude acceleration of acquisition, but they have different strengths and weaknesses, which we discuss in detail. The feasibility of the methods was proven by investigating restricted diffusion of water inside tracheid cells of thermally modified pine wood.
Identifiants
pubmed: 32551510
doi: 10.1021/acs.analchem.0c01523
pmc: PMC7439255
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9948-9955Références
Analyst. 2016 Mar 7;141(5):1745-52
pubmed: 26824089
Chem Commun (Camb). 2017 Oct 5;53(80):11056-11059
pubmed: 28948273
J Biomol NMR. 2014 Feb;58(2):129-39
pubmed: 24435565
Magn Reson Imaging. 2019 Feb;56:3-13
pubmed: 30322668
Anal Chem. 2013 Feb 5;85(3):1828-33
pubmed: 23297715
Magn Reson Chem. 2018 Jul;56(7):619-632
pubmed: 29441608
Nat Commun. 2020 Jun 26;11(1):3251
pubmed: 32591527
Angew Chem Int Ed Engl. 2014 Jun 16;53(25):6464-7
pubmed: 24764150
J Magn Reson. 2015 Sep;258:12-6
pubmed: 26150378
Chemphyschem. 2014 Jun 6;15(8):1687-92
pubmed: 24634359
J Control Release. 2004 Sep 30;99(2):315-27
pubmed: 15380640
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15858-62
pubmed: 12461169
NMR Biomed. 1995 Nov-Dec;8(7-8):297-306
pubmed: 8739268
Chem Commun (Camb). 2017 Jan 5;53(4):701-704
pubmed: 27918010
Prog Nucl Magn Reson Spectrosc. 2020 Feb;116:40-55
pubmed: 32130958
Analyst. 2018 Jul 9;143(14):3458-3464
pubmed: 29926017
Prog Nucl Magn Reson Spectrosc. 2010 Oct;57(3):241-92
pubmed: 20667401
Chemphyschem. 2019 Apr 2;20(7):926-930
pubmed: 30776189
Nat Commun. 2015 Sep 18;6:8363
pubmed: 26381101
Magn Reson Chem. 2019 Jan;57(1):4-12
pubmed: 30255516
J Magn Reson. 2016 Nov;272:25-36
pubmed: 27616657
Angew Chem Int Ed Engl. 2016 Apr 11;55(16):5040-3
pubmed: 26960011
Anal Chem. 2015 Jan 20;87(2):1337-43
pubmed: 25506657
J Am Chem Soc. 2003 Oct 8;125(40):12345-50
pubmed: 14519020
J Magn Reson. 2018 Sep;294:1-6
pubmed: 29960129
J Phys Chem C Nanomater Interfaces. 2019 Dec 26;123(51):30986-30995
pubmed: 31983933
Chem Sci. 2018 Jun 28;9(28):6143-6149
pubmed: 30090302
ChemistryOpen. 2019 Feb 14;8(2):196-200
pubmed: 30815327
J Biomol NMR. 2017 Jun;68(2):155-161
pubmed: 28508110
J Magn Reson. 2018 Jun;291:40-46
pubmed: 29698909
Chemphyschem. 2014 Aug 4;15(11):2217-20
pubmed: 24863674
J Magn Reson. 2008 Dec;195(2):226-31
pubmed: 18835796
Magn Reson Imaging. 1998 Jun-Jul;16(5-6):565-8
pubmed: 9803910
Phys Rev B Condens Matter. 1992 Jan 1;45(1):143-156
pubmed: 10000161