Convergent antibody responses to SARS-CoV-2 in convalescent individuals.
Adolescent
Adult
Aged
Antibodies, Monoclonal
/ analysis
Antibodies, Neutralizing
/ analysis
Antibodies, Viral
/ analysis
Antibody Specificity
Betacoronavirus
/ immunology
COVID-19
COVID-19 Vaccines
Coronavirus Infections
/ immunology
Enzyme-Linked Immunosorbent Assay
Female
Humans
Male
Middle Aged
Neutralization Tests
Pandemics
Pneumonia, Viral
/ immunology
SARS-CoV-2
Spike Glycoprotein, Coronavirus
/ chemistry
Viral Vaccines
/ immunology
Young Adult
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
03
05
2020
accepted:
12
06
2020
pubmed:
20
6
2020
medline:
28
8
2020
entrez:
20
6
2020
Statut:
ppublish
Résumé
During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2
Identifiants
pubmed: 32555388
doi: 10.1038/s41586-020-2456-9
pii: 10.1038/s41586-020-2456-9
pmc: PMC7442695
mid: NIHMS1603863
doi:
Substances chimiques
Antibodies, Monoclonal
0
Antibodies, Neutralizing
0
Antibodies, Viral
0
COVID-19 Vaccines
0
Spike Glycoprotein, Coronavirus
0
Viral Vaccines
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
437-442Subventions
Organisme : NIAID NIH HHS
ID : T32 AI070084
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI091707
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI138938
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI064003
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI111825
Pays : United States
Organisme : NIAID NIH HHS
ID : P50 AI150464
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Commentaires et corrections
Type : UpdateOf
Références
Graham, R. L., Donaldson, E. F. & Baric, R. S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11, 836–848 (2013).
doi: 10.1038/nrmicro3143
Gralinski, L. E. & Baric, R. S. Molecular pathology of emerging coronavirus infections. J. Pathol. 235, 185–195 (2015).
doi: 10.1002/path.4454
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
doi: 10.1016/j.cell.2020.02.052
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).
doi: 10.1016/j.cell.2020.02.058
Jiang, S., Hillyer, C. & Du, L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41, 355–359 (2020).
doi: 10.1016/j.it.2020.03.007
Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. https://doi.org/10.1038/s41591-020-0913-5 (2020).
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 (2020).
doi: 10.1016/j.cell.2020.05.015
Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).
doi: 10.1038/nature07930
Tiller, T. et al. Autoreactivity in human IgG
doi: 10.1016/j.immuni.2007.01.009
Murugan, R. et al. Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci. Immunol. 3, eaap8029 (2018).
Wang, Q. et al. A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.05.010 (2020).
Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393–397 (2019).
doi: 10.1038/s41586-019-0879-y
ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3, e237 (2006).
doi: 10.1371/journal.pmed.0030237
Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).
doi: 10.1126/science.abb7269
Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176, 1026–1039 (2019).
doi: 10.1016/j.cell.2018.12.028
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
doi: 10.1038/s41586-020-2349-y
Barnes, C. O. et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell https://doi.org/10.1016/j.cell.2020.06.025 (2020).
Zhu, Z. et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl Acad. Sci. USA 104, 12123–12128 (2007).
doi: 10.1073/pnas.0701000104
Salazar, G., Zhang, N., Fu, T. M. & An, Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines 2, 19 (2017).
doi: 10.1038/s41541-017-0019-3
Bournazos, S. & Ravetch, J. V. Anti-retroviral antibody FcγR-mediated effector functions. Immunol. Rev. 275, 285–295 (2017).
doi: 10.1111/imr.12482
Feinberg, M. B. & Ahmed, R. Advancing dengue vaccine development. Science 358, 865–866 (2017).
doi: 10.1126/science.aaq0215
Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341 (2020).
doi: 10.1038/s41577-020-0321-6
Van Rompay, K. K. A. et al. A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proc. Natl Acad. Sci. USA 117, 7981–7989 (2020).
doi: 10.1073/pnas.2000414117
Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010).
doi: 10.1128/CVI.00131-10
Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science eabc6284 (2020).
Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science eabc4776 (2020).
Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011).
doi: 10.1126/science.1207227
Robbiani, D. F. et al. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169, 597–609 (2017).
doi: 10.1016/j.cell.2017.04.024
Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 1589–1600 (2019).
doi: 10.1038/s41591-019-0602-4
Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).
doi: 10.1038/nature13764
Kane, M. et al. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20, 392–405 (2016).
doi: 10.1016/j.chom.2016.08.005
Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).
doi: 10.1128/JVI.59.2.284-291.1986
Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. https://doi.org/10.1084/jem.20201181 (2020).
Wang, Z. et al. Isolation of single HIV-1 envelope specific B cells and antibody cloning from immunized rhesus macaques. J. Immunol. Methods 478, 112734 (2020).
doi: 10.1016/j.jim.2019.112734
Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).
doi: 10.1016/j.jim.2007.09.017
von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat. Protocols 11, 1908–1923 (2016).
doi: 10.1038/nprot.2016.102
Klein, F. et al. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. J. Exp. Med. 211, 2361–2372 (2014).
doi: 10.1084/jem.20141050
Schoofs, T. et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity 50, 1513–1529 (2019).
doi: 10.1016/j.immuni.2019.04.014
Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).
doi: 10.1093/nar/gkt382
Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).
doi: 10.1093/bioinformatics/btv359
Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. PLoS ONE 7, e49774 (2012).
doi: 10.1371/journal.pone.0049774
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
doi: 10.1016/0022-2836(82)90515-0
Guy, H. R. Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys. J. 47, 61–70 (1985).
doi: 10.1016/S0006-3495(85)83877-7
DeWitt, W. S. et al. A public database of memory and naive B-cell receptor sequences. PLoS ONE 11, e0160853 (2016).
doi: 10.1371/journal.pone.0160853
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
doi: 10.1038/nmeth.4169
Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).
doi: 10.1016/j.jsb.2006.06.010