Evaluation of retinal vessel quantity within individual retinal structural layers using optical coherence tomography angiography.
Evaluation of retinal vessel
OCTA vessel quantity by retinal layer
Optical coherence tomography angiography
Retinal structural layers
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
received:
22
08
2019
accepted:
29
05
2020
revised:
25
05
2020
pubmed:
20
6
2020
medline:
19
8
2021
entrez:
20
6
2020
Statut:
ppublish
Résumé
To evaluate retinal vessel quantity within various retinal structural layers using optical coherence tomography angiography (OCTA). In this IRB-approved study, 22 normal eyes (from 22 subjects) were imaged using the Spectralis OCT2, with a 15 × 15 degree OCTA scan centered on fovea and two additional 15 × 5 degree OCTA scans, displaced temporally and nasally by 15 degrees along the fovea-Bruch's membrane opening (BMO) axis. Following projection artifact removal (PAR), vessel quantity (i.e., amount of flow signal) within each retinal nuclear and plexiform layer was assessed across the scan and was plotted as a vessel quantity profile over this fovea-BMO axis. Vessel quantity was correlated against the retinal layer thickness at the corresponding locations using the Spearman correlation. For the nerve fiber layer (NFL), the vessel quantity was highest nasally and declined towards the fovea and was near zero temporal to the fovea with or without PAR. For all other retinal layers, the retinal vessel quantities were greatest in the parafoveal retina, peaking approximately 5 degrees from the foveal center. Before PAR, the parafoveal vessel quantity was highest in the inner plexiform layer (IPL). Following PAR, the vessel quantity in the IPL decreased but was relatively unchanged in the other layers. The vessel quantity correlated moderately well with retinal layer thickness (r = 0.432 to 0.511; P < 0.05 among the various layers). Retinal vessel quantity varies significantly among the various structural layers, with significant regional variability. Projection artifact can significantly impact retinal vessel quantity in the deeper layers, but the effect appears to be most pronounced in the IPL.
Identifiants
pubmed: 32556529
doi: 10.1007/s00417-020-04776-8
pii: 10.1007/s00417-020-04776-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2111-2116Références
Yannuzzi LA, Rohrer KT, Tindel LJ et al (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–617. https://doi.org/10.1016/S0161-6420(86)33697-2
doi: 10.1016/S0161-6420(86)33697-2
pubmed: 3523356
Sarraf D, Rahimy E, Fawzi AA et al (2013) Paracentral acute middle maculopathy a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol 131:1275–1287. https://doi.org/10.1001/jamaophthalmol.2013.4056
doi: 10.1001/jamaophthalmol.2013.4056
pubmed: 23929382
Spaide RF, Fujimoto JG, Waheed NK et al (2018) Optical coherence tomography angiography. Prog Retin Eye Res:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003
Mastropasqua R, Toto L, Mastropasqua A et al (2017) Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int J Ophthalmol 10:1545–1551. https://doi.org/10.18240/ijo.2017.10.11
doi: 10.18240/ijo.2017.10.11
pubmed: 29062774
pmcid: 5638976
Schaal KB, Munk MR, Wyssmueller I et al (2017) Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina 1. https://doi.org/10.1097/IAE.0000000000001938
Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choroicapillaris alterations in diabetic patients with and without retinopathy. Retina (Philadelphia, Pa) 37:11–21. https://doi.org/10.1097/IAE.0000000000001250
doi: 10.1097/IAE.0000000000001250
Hirano T, Kakihara S, Toriyama Y et al (2017) Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol bjophthalmol-2017-311358. https://doi.org/10.1136/bjophthalmol-2017-311358
Koulisis N, Kim AY, Chu Z et al (2017) Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One 12:1–14. https://doi.org/10.1371/journal.pone.0176404
doi: 10.1371/journal.pone.0176404
Falavarjani KG, Scott AW, Wang K et al (2016) Correlation of multimodal imaging in sickle cell retinopathy. Retina 36:S111–S117. https://doi.org/10.1097/IAE.0000000000001230
doi: 10.1097/IAE.0000000000001230
Ghasemi Falavarjani K, Iafe NA, Hubschman JP et al (2017) Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Investig Ophthalmol Vis Sci 58:30–34. https://doi.org/10.1167/iovs.16-20579
doi: 10.1167/iovs.16-20579
Adhi M, Bonini Filho MA, Louzada RN et al (2016) Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57:486–494. https://doi.org/10.1167/iovs.15-18907
doi: 10.1167/iovs.15-18907
Dodo Y, Murakami T, Suzuma K et al (2017) Diabetic neuroglial changes in the superficial and deep nonperfused areas on optical coherence tomography angiography. Investig Ophthalmol Vis Sci 58:5870–5879. https://doi.org/10.1167/iovs.17-22156
doi: 10.1167/iovs.17-22156
Miwa Y, Murakami T, Suzuma K et al (2016) Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci Rep 6:1–12. https://doi.org/10.1038/srep29064
doi: 10.1038/srep29064
Wu S, Villegas VM, Kovach JL (2018) Case report optical coherence tomography angiography of combined central retinal artery and vein occlusion. Case Rep Ophthalmol Med 2018:1–5. https://doi.org/10.1155/2018/4342158
doi: 10.1155/2018/4342158
Hirano T, Chanwimol K, Weichsel J et al (2018) Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis. Sci Rep 1–7. https://doi.org/10.1038/s41598-018-27536-5
Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 130–137
Ouyang Y, Walsh AC, Keane PA et al (2013) Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251:2311–2317. https://doi.org/10.1007/s00417-013-2308-5
doi: 10.1007/s00417-013-2308-5
pubmed: 23661097
Campbell JP, Zhang M, Hwang TS et al (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep:7. https://doi.org/10.1038/srep42201
Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180. https://doi.org/10.1097/IAE.0000000000000765
doi: 10.1097/IAE.0000000000000765
pubmed: 26428607
pmcid: 4712934
Zhang Q, Zhang A, Lee CS et al (2017) Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. Ophthalmol Retina 1:124–136. https://doi.org/10.1016/j.oret.2016.08.005
doi: 10.1016/j.oret.2016.08.005
pubmed: 28584883
pmcid: 5455345
Zhang M, Hwang TS, Campbell JP et al (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7:816. https://doi.org/10.1364/BOE.7.000816
doi: 10.1364/BOE.7.000816
pubmed: 27231591
pmcid: 4866458