Exaggerated prevalence effect with the explicit prevalence information: The description-experience gap in visual search.
Prevalence effect
The description-experience gap
Visual search
Journal
Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
pubmed:
20
6
2020
medline:
22
12
2020
entrez:
20
6
2020
Statut:
ppublish
Résumé
Despite the increasing focus on target prevalence in visual search research, few papers have thoroughly examined the effect of how target prevalence is communicated. Findings in the judgment and decision-making literature have demonstrated that people behave differently depending on whether probabilistic information is made explicit or learned through experience, hence there is potential for a similar difference when communicating prevalence in visual search. Our current research examined how visual search changes depending on whether the target prevalence information was explicitly given to observers or they learned the prevalence through experience with additional manipulations of target reward and salience. We found that when the target prevalence was low, learning prevalence from experience resulted in more target-present responses and longer search times before quitting compared to when observers were explicitly informed of the target probability. The discrepancy narrowed with increased prevalence and reversed in the high target prevalence condition. Eye-tracking results indicated that search with experience consistently resulted in longer fixation durations, with the largest difference in low-prevalence conditions. Longer search time was primarily due to observers re-visited more items. Our work addressed the importance of exploring influences brought by probability communication in future prevalence visual search studies.
Identifiants
pubmed: 32557004
doi: 10.3758/s13414-020-02045-8
pii: 10.3758/s13414-020-02045-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3340-3356Références
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
doi: 10.18637/jss.v080.i01
Bürkner, P. -C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10 (1), 395–411.
doi: 10.32614/RJ-2018-017
Estes, W. K. (1976). The cognitive side of probability learning. Psychological Review, 83(1), 37–64.
doi: 10.1037/0033-295X.83.1.37
Evans, K. K., Birdwell, R. L., & Wolfe, J. M. (2013). If you don’t find it often, you often don’t find it: Why some cancers are missed in breast cancer screening. PloS ONE, 8(5), e64366.
pubmed: 23737980
pmcid: 3667799
doi: 10.1371/journal.pone.0064366
Fox, C. R., & Hadar, L. (2006). Decisions from experience”= sampling error+ prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004). Judgment and Decision Making, 1(2), 159–161.
Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2015). The effects of increasing target prevalence on information processing during visual search. Psychonomic Bulletin & Review, 22(2), 469–475.
doi: 10.3758/s13423-014-0686-2
Green, D. M., & Swets, J.A. (1966) Signal detection theory and psychophysics. New York: Wiley.
Gronau, Q.F., & Singmann, H. (2018). bridgesampling: Bridge sampling for marginal likelihoods and Bayes factors [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=bridgesampling (R package version 0.6-0).
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534–539.
pubmed: 15270998
doi: 10.1111/j.0956-7976.2004.00715.x
Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517–523.
pubmed: 19836292
doi: 10.1016/j.tics.2009.09.004
Horowitz, T. S. (2017). Prevalence in visual search: from the clinic to the lab and back again. Japanese Psychological Research, 59(2), 65–108.
doi: 10.1111/jpr.12153
Ishibashi, K., & Kita, S. (2014). Probability cueing influences miss rate and decision criterion in visual searches. i-Perception, 5(3), 170–175.
pubmed: 25469223
pmcid: 4249987
doi: 10.1068/i0649rep
Ishibashi, K., Kita, S., & Wolfe, J. M. (2012). The effects of local prevalence and explicit expectations on search termination times. Attention, Perception, & Psychophysics, 74(1), 115– 123.
doi: 10.3758/s13414-011-0225-4
Jeffreys, H. (1961) Theory of probability, (3rd edn.) Oxford: Oxford University Press.
Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decisions under risk. Econometrica, 47, 263–292.
doi: 10.2307/1914185
Kundel, H. L. (1982). Disease prevalence and radiological decision making. Investigative Radiology, 17(1), 107–109.
pubmed: 7076429
doi: 10.1097/00004424-198201000-00020
Kundel, H. L. (2000). Disease prevalence and the index of detectability: a survey of studies of lung cancer detection by chest radiography. In Proceedings of SPIE: Image perception and performance, (Vol. 3981 pp. 135–145).
Lau, J. S. -H., & Huang, L. (2010). The prevalence effect is determined by past experience, not future prospects. Vision Research, 50(15), 1469–1474.
pubmed: 20438744
doi: 10.1016/j.visres.2010.04.020
Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J.E.-J. Wagenmwakers (Ed.) Stevens’ handbook of experimental psychology and cognitive neuroscience. (4th edn.), (Vol. 5 pp. 37–84). New York: Wiley.
Lee, M.D., & Wagenmakers, E.-J. (2014) Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press.
Littlefair, S., Brennan, P., Reed, W., & Mello-Thoms, C. (2017). Does expectation of abnormality affect the search pattern of radiologists when looking for pulmonary nodules? Journal of Digital Imaging, 30(1), 55–62.
pubmed: 27659798
doi: 10.1007/s10278-016-9908-7
Littlefair, S., Mello-Thoms, C., Reed, W., Pietryzk, M., Lewis, S., McEntee, M., & et al. (2016). Increasing prevalence expectation in thoracic radiology leads to overcall. Academic Radiology, 23(3), 284–289.
pubmed: 26774736
doi: 10.1016/j.acra.2015.11.007
McElreath, R. (2018) Statistical rethinking: A Bayesian course with examples in R and Stan. London: Chapman and Hall/CRC.
doi: 10.1201/9781315372495
Meredith, M., & Kruschke, J. (2018). HDInterval: Highest (posterior) density intervals [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=HDInterval (R package version 0.2.0).
Morey, RD., & Rouder, J. N. (2018). Bayesfactor: Computation of Bayes factors for common designs [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=BayesFactor (R package version 0.9.12-4.2).
Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual search. Journal of Vision, 9(1), https://doi.org/10.1167/9.1.31 .
Nocum, D. J., Brennan, P. C., Huang, R. T., & Reed, W. M. (2013). The effect of abnormality-prevalence expectation on naïve observer performance and visual search. Radiography, 19(3), 196–199.
doi: 10.1016/j.radi.2013.04.004
Peirce, J. W. (2007). PsychoPy – psychophysics software in Python. Journal of Neuroscience Methods, 162 (1-2), 8–13.
pubmed: 17254636
pmcid: 2018741
doi: 10.1016/j.jneumeth.2006.11.017
Peltier, C., & Becker, M. W. (2016). Decision processes in visual search as a function of target prevalence. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1466–1476.
pubmed: 27149294
Peltier, C., & Becker, M. W. (2017a). Individual differences predict low prevalence visual search performance. Cognitive Research: Principles and Implications, 2(1), https://doi.org/10.1186/s41235-016-0042-3 .
Peltier, C., & Becker, M. W. (2017b). Target-present guessing as a function of target prevalence and accumulated information in visual search. Attention, Perception, & Psychophysics, 79(4), 1064–1069.
Reed, W. M., Chow, S. L. C., Chew, L. E., & Brennan, P. C. (2014). Can prevalence expectations drive radiologists’ behavior? Academic Radiology, 21(4), 450–456.
pubmed: 24594414
doi: 10.1016/j.acra.2013.12.002
Reed, W. M., Ryan, J. T., McEntee, M. F., Evanoff, M. G., & Brennan, P. C. (2011). The effect of abnormality-prevalence expectation on expert observer performance and visual search. Radiology, 258(3), 938–943.
pubmed: 21248231
doi: 10.1148/radiol.10101090
Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), https://doi.org/10.1167/8.15.15 .
Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12 (4), 573– 604.
doi: 10.3758/BF03196750
Schwark, J. D., MacDonald, J., Sandry, J., & Dolgov, I. (2013). Prevalence-based decisions undermine visual search. Visual Cognition, 21(5), 541–568.
doi: 10.1080/13506285.2013.811135
Schwark, J. D., Sandry, J., MacDonald, J., & Dolgov, I. (2012). False feedback increases detection of low-prevalence targets in visual search. Attention, Perception, & Psychophysics, 74(8), 1583–1589.
doi: 10.3758/s13414-012-0354-4
Smith, P. L., & Little, D. R. (2018). Small is beautiful: in defense of the small-n design. Psychonomic Bulletin & Review, 25(6), 2083–2101.
doi: 10.3758/s13423-018-1451-8
Stan Development Team (2018). RStan: the R interface to Stan. Retrieved from http://mc-stan.org/ (R package version 2.17.3).
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.
doi: 10.1007/BF00122574
Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71 (3), 541– 553.
doi: 10.3758/APP.71.3.541
Wickens, T. D. (2002) Elementary signal detection theory. USA: Oxford University Press.
Wolfe, J. M., Brunelli, D. N., Rubinstein, J., & Horowitz, T. S. (2013). Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets, too. Journal of Vision. 13(3), https://doi.org/10.1167/13.3.33 .
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Cognitive psychology: Rare items often missed in visual searches. Nature, 435(7041), 439–440.
pubmed: 15917795
pmcid: 4224304
doi: 10.1038/435439a
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623–638.
doi: 10.1037/0096-3445.136.4.623
Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121–124.
pubmed: 20079642
doi: 10.1016/j.cub.2009.11.066
Wulff, D. U., Mergenthaler-Canseco, M., & Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description-experience gap. Psychological Bulletin, 144(2), 140–176.
pubmed: 29239630
doi: 10.1037/bul0000115