Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness.
Journal
Biomacromolecules
ISSN: 1526-4602
Titre abrégé: Biomacromolecules
Pays: United States
ID NLM: 100892849
Informations de publication
Date de publication:
10 08 2020
10 08 2020
Historique:
pubmed:
20
6
2020
medline:
22
6
2021
entrez:
20
6
2020
Statut:
ppublish
Résumé
During the wound healing process, human mesenchymal stem cells (hMSCs) are recruited to the injury where they regulate inflammation and initiate healing and tissue regeneration. To aid in healing, synthetic cell-laden hydrogel scaffolds are being designed to deliver additional hMSCs to wounds to enhance or restart the healing process. These scaffolds are being designed to mimic native tissue environments, which include physical cues, such as scaffold stiffness. In this work, we focus on how the initial scaffold stiffness hMSCs are encapsulated in changes cell-mediated remodeling and degradation and motility. To do this, we encapsulate hMSCs in a well-defined synthetic hydrogel scaffold that recapitulates aspects of the native extracellular matrix (ECM). We then characterize cell-mediated degradation in the pericellular region as a function of initial microenvironmental stiffness. Our hydrogel consists of a 4-arm poly(ethylene glycol) (PEG) end-functionalized with norbornene which is chemically cross-linked with a matrix metalloproteinase (MMP) degradable peptide sequence. This peptide sequence is cleaved by hMSC-secreted MMPs. The hydrogel elastic modulus is varied from 80 to 2400 Pa by changing the concentration of the peptide cross-linker. We use multiple particle tracking microrheology (MPT) to characterize the spatiotemporal cell-mediated degradation in the pericellular region. In MPT, fluorescently labeled particles are embedded in the material, and their Brownian motion is measured. We measure an increase in cell-mediated degradation and remodeling as the post-encapsulation time increases. MPT also measures changes in the degradation profile in the pericellular region as hydrogel stiffness is increased. We hypothesize that the change in the degradation profile is due to a change in the amount and type of molecules secreted by hMSCs. We also measure a significant decrease in cell speed as hydrogel stiffness increases due to the increased physical barrier that needs to be degraded to enable motility. These measurements increase our understanding of the rheological changes in the pericellular region in different physical microenvironments which could lead to better design of implantable biomaterials for cell delivery to wounded areas.
Identifiants
pubmed: 32559386
doi: 10.1021/acs.biomac.0c00432
pmc: PMC7429327
mid: NIHMS1605998
doi:
Substances chimiques
Biocompatible Materials
0
Hydrogels
0
Polyethylene Glycols
3WJQ0SDW1A
Matrix Metalloproteinases
EC 3.4.24.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3056-3068Subventions
Organisme : NIGMS NIH HHS
ID : R15 GM119065
Pays : United States
Références
ACS Biomater Sci Eng. 2018 Feb 12;4(2):468-472
pubmed: 29862316
Biophys J. 2008 Apr 1;94(7):2914-25
pubmed: 18178662
Soft Matter. 2018 Jul 18;14(28):5811-5820
pubmed: 29974108
Assay Drug Dev Technol. 2019 Apr;17(3):100-115
pubmed: 30958702
Integr Biol (Camb). 2010 Jan;2(1):32-40
pubmed: 20473410
Biomaterials. 2010 Oct;31(30):7836-45
pubmed: 20667588
Biomaterials. 2010 May;31(13):3736-43
pubmed: 20138664
J Cell Sci. 2010 Feb 1;123(Pt 3):297-308
pubmed: 20130138
J Control Release. 2015 Dec 10;219:95-106
pubmed: 26315818
Biomaterials. 2009 Dec;30(35):6702-7
pubmed: 19783300
Stem Cell Res Ther. 2016 Mar 09;7:37
pubmed: 26960535
Blood Cells Mol Dis. 2001 May-Jun;27(3):601-4
pubmed: 11482873
Rheol Acta. 2019 Aug;58(8):421-437
pubmed: 32773889
Adv Sci (Weinh). 2018 Jun 13;5(8):1800448
pubmed: 30128252
Biophys J. 2005 Jan;88(1):623-38
pubmed: 15533928
Microvasc Res. 2012 May;83(3):267-75
pubmed: 22391452
Adv Wound Care (New Rochelle). 2016 Apr 1;5(4):149-163
pubmed: 27076993
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3757-64
pubmed: 26150508
Soft Matter. 2016 Aug 14;12(30):6463-72
pubmed: 27396611
Biomaterials. 2007 Jun;28(17):2706-17
pubmed: 17346788
ACS Macro Lett. 2012 Jun 19;1(6):706-708
pubmed: 23413411
Soft Matter. 2019 Jul 24;15(29):5921-5932
pubmed: 31282533
Acta Biomater. 2007 Sep;3(5):615-29
pubmed: 17572164
N Engl J Med. 1999 Sep 2;341(10):738-46
pubmed: 10471461
J Biomed Mater Res A. 2003 Jan 1;64(1):70-9
pubmed: 12483698
Phys Rev Lett. 2008 Apr 11;100(14):146001
pubmed: 18518051
Biophys J. 2005 Aug;89(2):1374-88
pubmed: 15923238
Stem Cells. 2007 Jul;25(7):1737-45
pubmed: 17395768
Macromolecules. 2009 Jul 28;42(14):5310-5316
pubmed: 21494422
Dis Model Mech. 2011 Mar;4(2):165-78
pubmed: 21324931
Biomaterials. 2011 May;32(14):3564-74
pubmed: 21334063
Stem Cells Transl Med. 2012 Feb;1(2):142-9
pubmed: 23197761
Biomaterials. 2006 Oct;27(28):4881-93
pubmed: 16762407
Blood. 2004 Dec 1;104(12):3581-7
pubmed: 15297308
Cell. 2006 Aug 25;126(4):677-89
pubmed: 16923388
Nat Biotechnol. 2003 May;21(5):513-8
pubmed: 12704396
Front Chem. 2019 May 08;7:317
pubmed: 31134188
Biomaterials. 2009 Oct;30(30):6048-54
pubmed: 19674784
Genes Dev. 2000 Sep 1;14(17):2123-33
pubmed: 10970876
Macromol Biosci. 2016 Nov;16(11):1703-1713
pubmed: 27548907
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5413-8
pubmed: 12686696
J Cell Physiol. 2003 Aug;196(2):245-50
pubmed: 12811816
J Cell Biol. 2013 Jun 24;201(7):1069-84
pubmed: 23798731
Curr Opin Biotechnol. 2013 Oct;24(5):841-6
pubmed: 23545441
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5366-71
pubmed: 25870264
J Cell Sci. 2017 Jan 1;130(1):71-82
pubmed: 28043968
Matrix Biol. 2014 Feb;34:132-43
pubmed: 24140982
Soft Matter. 2018 Apr 25;14(16):3078-3089
pubmed: 29667686
Adv Mater. 2010 Aug 17;22(31):3484-94
pubmed: 20473984
Biomaterials. 2009 Dec;30(34):6593-603
pubmed: 19747725
Acta Biomater. 2020 Jul 15;111:254-266
pubmed: 32434077
Biomacromolecules. 2011 Dec 12;12(12):4178-82
pubmed: 22023267
Phys Rev Lett. 1995 Feb 13;74(7):1250-1253
pubmed: 10058972
Blood. 2007 May 1;109(9):4055-63
pubmed: 17197427
J Pathol. 2009 Jan;217(2):318-24
pubmed: 19023885
Adv Mater. 2009 Dec 28;21(48):5005-5010
pubmed: 25377720
Biomaterials. 2013 Oct;34(30):7344-52
pubmed: 23830581
Acta Biomater. 2013 May;9(5):6381-92
pubmed: 23376239
Langmuir. 2009 Aug 4;25(15):8599-605
pubmed: 19344157