Selective, high-contrast detection of syngeneic glioblastoma in vivo.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 06 2020
Historique:
received: 30 11 2019
accepted: 19 05 2020
entrez: 21 6 2020
pubmed: 21 6 2020
medline: 21 6 2020
Statut: epublish

Résumé

Glioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour's ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo

Identifiants

pubmed: 32561881
doi: 10.1038/s41598-020-67036-z
pii: 10.1038/s41598-020-67036-z
pmc: PMC7305160
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9968

Commentaires et corrections

Type : ErratumIn

Références

Li, W. & Graeber, M. B. The molecular profile of microglia under the influence of glioma. Neuro-oncology 14, 958–978, https://doi.org/10.1093/neuonc/nos116 (2012).
doi: 10.1093/neuonc/nos116 pubmed: 22573310 pmcid: 3408253
Graeber, M. B., Scheithauer, B. W. & Kreutzberg, G. W. Microglia in brain tumors. Glia 40, 252–259, https://doi.org/10.1002/glia.10147 (2002).
doi: 10.1002/glia.10147 pubmed: 12379912
Penfield, W. Microglia and the process of phagocytosis in gliomas. Am. J. Pathol. 1(77–90), 15 (1925).
pubmed: 19969634
Weller, M. Microglia: a novel treatment target in gliomas. Neuro-oncology 14, 957, https://doi.org/10.1093/neuonc/nos147 (2012).
doi: 10.1093/neuonc/nos147 pubmed: 22851682 pmcid: 3408267
Graeber, M. B. Changing face of microglia. Science 330, 783–788, https://doi.org/10.1126/science.1190929 (2010).
doi: 10.1126/science.1190929 pubmed: 21051630
Graeber, M. B., Streit, W. J., Kiefer, R., Schoen, S. W. & Kreutzberg, G. W. New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J. neuroimmunology 27, 121–132, https://doi.org/10.1016/0165-5728(90)90061-q (1990).
doi: 10.1016/0165-5728(90)90061-q
Kreutzberg, G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318, https://doi.org/10.1016/0166-2236(96)10049-7 (1996).
doi: 10.1016/0166-2236(96)10049-7 pubmed: 8843599
Banati, R. B. Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. Paris. 96, 289–299, https://doi.org/10.1016/s0928-4257(02)00018-9 (2002).
doi: 10.1016/s0928-4257(02)00018-9 pubmed: 12445908
Banati, R. B. et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 12, 3439–3442, https://doi.org/10.1097/00001756-200111160-00012 (2001).
doi: 10.1097/00001756-200111160-00012 pubmed: 11733686
Banati, R. B., Myers, R. & Kreutzberg, G. W. PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J. neurocytology 26, 77–82 (1997).
doi: 10.1023/A:1018567510105
Banati, R. B. et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat. Commun. 5, 5452, https://doi.org/10.1038/ncomms6452 (2014).
doi: 10.1038/ncomms6452 pubmed: 25406832 pmcid: 4263137
Louis, D. N., Ohgaki, H., Wiestler, O. D. & Cavenee, W. K. World Health Organization Histological Classification of Tumours of the Central Nervous System. (International Agency for Research on Cancer, France, 2016).
Ascierto, P. A. et al. New paradigm for stage III melanoma: from surgery to adjuvant treatment. J. Transl. Med. 17, 266, https://doi.org/10.1186/s12967-019-2012-2 (2019).
doi: 10.1186/s12967-019-2012-2 pubmed: 31412885 pmcid: 6693227
Yang, Y., He, M. Z., Li, T. & Yang, X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg. Rev. 42, 185–195, https://doi.org/10.1007/s10143-017-0906-0 (2019).
doi: 10.1007/s10143-017-0906-0 pubmed: 28918564
la Fougere, C., Suchorska, B., Bartenstein, P., Kreth, F. W. & Tonn, J. C. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-oncology 13, 806–819, https://doi.org/10.1093/neuonc/nor054 (2011).
doi: 10.1093/neuonc/nor054 pubmed: 21757446 pmcid: 3145468
Takahashi, M. et al. Pattern of FDG and MET Distribution in High- and Low-Grade Gliomas on PET Images. Clin. Nucl. Med. 44, 265–271, https://doi.org/10.1097/RLU.0000000000002460 (2019).
doi: 10.1097/RLU.0000000000002460 pubmed: 30688731
Heiss, W. D., Raab, P. & Lanfermann, H. Multimodality assessment of brain tumors and tumor recurrence. J. Nucl. Med. 52, 1585–1600, https://doi.org/10.2967/jnumed.110.084210 (2011).
doi: 10.2967/jnumed.110.084210 pubmed: 21840931
Floeth, F. W. et al. 18F-FET PET differentiation of ring-enhancing brain lesions. J. Nucl. Med. 47, 776–782 (2006).
pubmed: 16644747
Filiou, M. D., Banati, R. B. & Graeber, M. B. The 18-kDa Translocator Protein as a CNS Drug Target: Finding Our Way Through the Neuroinflammation Fog. CNS neurological Disord. drug. targets 16, 990–999, https://doi.org/10.2174/1871527316666171004125107 (2017).
doi: 10.2174/1871527316666171004125107
Liu, G. J. et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 24, 631–653, https://doi.org/10.1111/bpa.12196 (2014).
doi: 10.1111/bpa.12196 pubmed: 25345894
Pappata, S. et al. PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J. Nucl. Med. 32, 1608–1610 (1991).
pubmed: 1651383
Jensen, P. et al. TSPO Imaging in Glioblastoma Multiforme: A Direct Comparison Between 123I-CLINDE SPECT, 18F-FET PET, and Gadolinium-Enhanced MR Imaging. J. Nucl. Med. 56, 1386–1390, https://doi.org/10.2967/jnumed.115.158998 (2015).
doi: 10.2967/jnumed.115.158998 pubmed: 26182972
Albert, N. L. et al. TSPO PET for glioma imaging using the novel ligand (18)F-GE-180: first results in patients with glioblastoma. Eur. J. Nucl. Med. Mol. imaging 44, 2230–2238, https://doi.org/10.1007/s00259-017-3799-9 (2017).
doi: 10.1007/s00259-017-3799-9 pubmed: 28821920
Unterrainer, M. et al. Detection of Cerebrospinal Fluid Dissemination of Recurrent Glioblastoma Using TSPO-PET With 18F-GE-180. Clin. Nucl. Med. 43, 518–519, https://doi.org/10.1097/RLU.0000000000002113 (2018).
doi: 10.1097/RLU.0000000000002113 pubmed: 29742608
Zinnhardt, B. et al. Combined PET Imaging of the Inflammatory Tumor Microenvironment Identifies Margins of Unique Radiotracer Uptake. Cancer Res. 77, 1831–1841, https://doi.org/10.1158/0008-5472.Can-16-2628 (2017).
doi: 10.1158/0008-5472.Can-16-2628 pubmed: 28137769
Disselhorst, J. A. et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J. Nucl. Med. 51, 610–617, https://doi.org/10.2967/jnumed.109.068858 (2010).
doi: 10.2967/jnumed.109.068858 pubmed: 20237025
Mattner, F. et al. Central nervous system expression and PET imaging of the translocator protein in relapsing-remitting experimental autoimmune encephalomyelitis. J. Nucl. Med. 54, 291–298, https://doi.org/10.2967/jnumed.112.108894 (2013).
doi: 10.2967/jnumed.112.108894 pubmed: 23321458
Betlazar, C., Harrison-Brown, M., Middleton, R. J., Banati, R. & Liu, G. J. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci 19, https://doi.org/10.3390/ijms19092707 (2018).
Pigeon, H. et al. TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma. Neuro-oncology 21, 755–764, https://doi.org/10.1093/neuonc/noz029 (2019).
doi: 10.1093/neuonc/noz029 pubmed: 30721979 pmcid: 6556856
Tang, D. et al. Preclinical Evaluation of a Novel TSPO PET Ligand 2-(7-Butyl-2-(4-(2-[18F]Fluoroethoxy)phenyl)-5-Methylpyrazolo[1,5-a]Pyrimidin-3-yl)-N,N-Diethylacetamide (18F-VUIIS1018A) to Image Glioma. Mol. Imaging Biol. 9, 906–909, https://doi.org/10.1007/s11307-018-1198-7 (2018).
doi: 10.1007/s11307-018-1198-7
Buck, J. R. et al. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One 10, e0141659, https://doi.org/10.1371/journal.pone.0141659 (2015).
doi: 10.1371/journal.pone.0141659 pubmed: 26517124 pmcid: 4627825
Starosta-Rubinstein, S., Ciliax, B. J., Penney, J. B., McKeever, P. & Young, A. B. Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc. Natl Acad. Sci. U S Am. 84, 891–895 (1987).
doi: 10.1073/pnas.84.3.891
Su, Z. et al. The 18-kDa Mitochondrial Translocator Protein in Human Gliomas: A 11C-(R)PK11195 PET Imaging and Neuropathology Study. J Nucl Med, https://doi.org/10.2967/jnumed.114.151621 (2015).
Takaya, S. et al. The lack of expression of the peripheral benzodiazepine receptor characterises microglial response in anaplastic astrocytomas. J. Neurooncol 85, 95–103, https://doi.org/10.1007/s11060-007-9396-1 (2007).
doi: 10.1007/s11060-007-9396-1 pubmed: 17520179
Vlodavsky, E. & Soustiel, J. F. Immunohistochemical expression of peripheral benzodiazepine receptors in human astrocytomas and its correlation with grade of malignancy, proliferation, apoptosis and survival. J. Neurooncol 81, 1–7, https://doi.org/10.1007/s11060-006-9199-9 (2007).
doi: 10.1007/s11060-006-9199-9 pubmed: 16868661
Winkeler, A. et al. The translocator protein ligand [(1)(8)F]DPA-714 images glioma and activated microglia in vivo. Eur. J. Nucl. Med. Mol. imaging 39, 811–823, https://doi.org/10.1007/s00259-011-2041-4 (2012).
doi: 10.1007/s00259-011-2041-4 pubmed: 22270507 pmcid: 3326235
Laquintana, V. et al. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells. Mol. Pharm. 11, 859–871, https://doi.org/10.1021/mp400536z (2014).
doi: 10.1021/mp400536z pubmed: 24410438
Awde, A. R. et al. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J. Nucl. Med. 54, 2125–2131, https://doi.org/10.2967/jnumed.112.118794 (2013).
doi: 10.2967/jnumed.112.118794 pubmed: 24212976
Gatliff, J. & Campanella, M. The 18 kDa translocator protein (TSPO): a new perspective in mitochondrial biology. Curr. Mol. Med. 12, 356–368 (2012).
pubmed: 22364127
Avital, A. et al. Acute and repeated swim stress effects on peripheral benzodiazepine receptors in the rat hippocampus, adrenal, and kidney. Neuropsychopharmacology 25, 669–678, https://doi.org/10.1016/S0893-133X(01)00286-X (2001).
doi: 10.1016/S0893-133X(01)00286-X pubmed: 11682250
Fukudome, D. et al. Translocator protein (TSPO) and stress cascades in mouse models of psychosis with inflammatory disturbances. Schizophr. Res. 197, 492–497, https://doi.org/10.1016/j.schres.2018.01.015 (2018).
doi: 10.1016/j.schres.2018.01.015 pubmed: 29398205 pmcid: 6470041
Wolford, C. C. et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J. Clin. Invest. 123, 2893–2906, https://doi.org/10.1172/JCI64410 (2013).
doi: 10.1172/JCI64410 pubmed: 23921126 pmcid: 3696548
Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463, 545–548, https://doi.org/10.1038/nature08702 (2010).
doi: 10.1038/nature08702 pubmed: 20072127 pmcid: 2835536
Li, J. et al. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas. Biochem. Biophys. Res. Commun. 472, 384–391, https://doi.org/10.1016/j.bbrc.2016.02.035 (2016).
doi: 10.1016/j.bbrc.2016.02.035 pubmed: 26898800
Lopalco, A. et al. Delivery of Proapoptotic Agents in Glioma Cell Lines by TSPO Ligand-Dextran Nanogels. Int J Mol Sci. 19, https://doi.org/10.3390/ijms19041155 (2018).
Laquintana, V. et al. TSPO Ligand-Methotrexate Prodrug Conjugates: Design, Synthesis, and Biological Evaluation. Int J Mol Sci 17, https://doi.org/10.3390/ijms17060967 (2016).

Auteurs

Richard B Banati (RB)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia. richard.banati@sydney.edu.au.
Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia. richard.banati@sydney.edu.au.

Paul Wilcox (P)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Ran Xu (R)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Grace Yin (G)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Emily Si (E)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Eric Taeyoung Son (ET)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Mauricio Shimizu (M)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

R M Damian Holsinger (RMD)

Molecular Neuroscience, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Arvind Parmar (A)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

David Zahra (D)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

Andrew Arthur (A)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

Ryan J Middleton (RJ)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

Guo-Jun Liu (GJ)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.
Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.

Arnaud Charil (A)

Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

Manuel B Graeber (MB)

Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia. manuel@graeber.net.

Classifications MeSH