In Vitro Models of the Blood-Brain Barrier.
Astrocyte
Microphysiological systems
Neuron
Oligodendrocyte
Pericyte
hiPSC
Journal
Handbook of experimental pharmacology
ISSN: 0171-2004
Titre abrégé: Handb Exp Pharmacol
Pays: Germany
ID NLM: 7902231
Informations de publication
Date de publication:
2021
2021
Historique:
pubmed:
21
6
2020
medline:
30
3
2021
entrez:
21
6
2020
Statut:
ppublish
Résumé
Knowledge about the transport of active compounds across the blood-brain barrier is of essential importance for drug development. Systemically applied drugs for the central nervous system (CNS) must be able to cross the blood-brain barrier in order to reach their target sites, whereas drugs that are supposed to act in the periphery should not permeate the blood-brain barrier so that they do not trigger any adverse central adverse effects. A number of approaches have been pursued, and manifold in silico, in vitro, and in vivo animal models were developed in order to be able to make a better prediction for humans about the possible penetration of active substances into the CNS. In this particular case, however, in vitro models play a special role, since the data basis for in silico models is usually in need of improvement, and the predictive power of in vivo animal models has to be checked for possible species differences. The blood-brain barrier is a dynamic, highly selective barrier formed by brain capillary endothelial cells. One of its main tasks is the maintenance of homeostasis in the CNS. The function of the barrier is regulated by cells of the microenvironment and the shear stress mediated by the blood flow, which makes the model development most complex. In general, one could follow the credo "as easy as possible, as complex as necessary" for the usage of in vitro BBB models for drug development. In addition to the description of the classical cell culture models (transwell, hollow fiber) and guidance how to apply them, the latest developments (spheroids, microfluidic models) will be introduced in this chapter, as it is attempted to get more in vivo-like and to be applicable for high-throughput usage with these models. Moreover, details about the development of models based on stem cells derived from different sources with a special focus on human induced pluripotent stem cells are presented.
Identifiants
pubmed: 32562060
doi: 10.1007/164_2020_370
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
75-110Références
Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824
pubmed: 16371949
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030
pubmed: 19664713
Abbott NJ, Dolman DEM, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. In: Milner R (ed) Astrocytes – methods and protocols, Methods in molecular biology, vol 814. Humana Press, New York, pp 415–430
Abdullahi W, Davis TP, Ronaldson PT (2017) Functional expression of P-glycoprotein and organic anion transporting polypeptides at the blood-brain barrier: understanding transport mechanisms for improved CNS drug delivery? AAPS J 19(4):931–939. https://doi.org/10.1208/s12248-017-0081-9
pubmed: 28447295
pmcid: 5505261
Adriani G, Ma D, Pavesi A, Kamm RD, Goh EL (2017) A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17(3):448–459. https://doi.org/10.1039/c6lc00638h
pubmed: 28001148
Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31(2):693–705. https://doi.org/10.1038/jcbfm.2010.148
pubmed: 20827262
Al-Ahmad AJ, Patel R, Palecek SP, Shusta EV (2019) Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab 39(9):1759–1775. https://doi.org/10.1177/0271678X18767748
pubmed: 29589805
Albekairi TH, Vaidya B, Patel R, Nozohouri S, Villalba H, Zhang Y, Lee YS, Al-Ahmad A, Abbruscato TJ (2019) Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics 11(9):E467. https://doi.org/10.3390/pharmaceutics11090467
pubmed: 31509975
Alimonti JB, Ribecco-Lutkiewicz M, Sodja C, Jezierski A, Stanimirovic DB, Liu Q, Haqqani AS, Conlan W, Bani-Yaghoub M (2018) Zika virus crosses an in vitro human blood brain barrier model. Fluids Barriers CNS 15(1):15. https://doi.org/10.1186/s12987-018-0100-y
pubmed: 29759080
pmcid: 5952854
Alvarez FM, Bottom CB, Chikale P, Pidgeon C (1993) Immobilized artificial membrane chromatography. Prediction of drug transport across biological barriers. In: Ngo T (ed) Molecular interaction in biomolecular separation. Plenum Press, New York, pp 151–167
Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, Stüber T, Walles H, Neuhaus W, Metzger M (2017) Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep 8(4):894–906. https://doi.org/10.1016/j.stemcr.2017.02.021
Avdeef A, Tsinman O (2006) PAMPA – a drug absorption in vitro model. 13. Chemical electivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA. Eur J Pharm Sci 28(1-2):43–50. https://doi.org/10.1016/j.ejps.2005.12.008
pubmed: 16476536
Avdeef A, Deli MA, Neuhaus W (2015) In-vitro assays for assessing BBB permeability: artificial membrane and cell culture models. In: Di L, Kerns EH (eds) Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effects. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 188–237
Bang S, Lee SR, Ko J, Son K, Tahk D, Ahn J, Im C, Jeon NL (2017) A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep 7(1):8083. https://doi.org/10.1038/s41598-017-07416-0
pubmed: 28808270
pmcid: 5556097
Bao X, Wu J, Xie Y, Kim S, Michelhaugh S, Jiang J, Mittal S, Sanai N, Li J (2019) Protein expression and functional relevance of efflux and uptake drug transporters at the blood-brain barrier of human brain and glioblastoma. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1710
Begley DJ, Pontikis CC, Scarpa M (2008) Lysosomal storage diseases and the blood-brain barrier. Curr Pharm Des 14(16):1566–1580. https://doi.org/10.2174/138161208784705504
pubmed: 18673198
Bergmann S, Lawler SE, Qu Y, Fadzen CM, Wolfe JM, Regan MS, Pentelute BL, Agar NYR, Cho CF (2018) Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc 13(12):2827–2843. https://doi.org/10.1038/s41596-018-0066-x
pubmed: 30382243
pmcid: 6673652
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF (2019) Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 76(10):1987–2002. https://doi.org/10.1007/s00018-019-03030-7
pubmed: 30734065
Bicker J, Alves G, Fortuna A, Soares-da-Silva P, Falcão A (2016) A new PAMPA model using an in-house brain lipid extract for screening the blood-brain barrier permeability of drug candidates. Int J Pharm 501(1-2):102–111. https://doi.org/10.1016/j.ijpharm.2016.01.074
pubmed: 26836708
Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792. https://doi.org/10.1039/c2lc40094d
pubmed: 22422217
Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y, Liu K, Lisota B, Jones JR, Petersen A, Bhattacharyya A, Palecek SP, Shusta EV, Kendziorski C, Zhang SC (2019) Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 146(13):dev170910. https://doi.org/10.1242/dev.170910
pubmed: 31189664
pmcid: 6633609
Breedveld P, Beijnen JH, Schellens JH (2006) Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 27(1):17–24. https://doi.org/10.1016/j.tips.2005.11.009
pubmed: 16337012
Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM, Samson PC, McCawley LJ, May JM, Webb DJ, Li D, Bowman AB, Reiserer RS, Wikswo JP (2015) Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 9(5):054124. https://doi.org/10.1063/1.4934713
pubmed: 26576206
pmcid: 4627929
Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 429:47–62
pubmed: 2277354
pmcid: 1181686
Cader MZ, Chintawar S (2019) Generating brain microvascular endothelial cells from pluripotent stem cells to model the human blood-brain barrier and the neurovascular unit. Patent WO2019058140A1
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD (2018) 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 180:117–129. https://doi.org/10.1016/j.biomaterials.2018.07.014
pubmed: 30032046
pmcid: 6201194
Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD, Svendsen CN, Palecek SP, Shusta EV (2017) An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 140(6):874–888. https://doi.org/10.1111/jnc.13923
pubmed: 27935037
pmcid: 5339046
Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV (2019) An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS. 16(1):25. https://doi.org/10.1186/s12987-019-0145-6
pubmed: 31387594
pmcid: 6685239
Cantrill CA, Skinner RA, Rothwell NJ, Penny JI (2012) An immortalised astrocyte cell line maintains the in vivo phenotype of primary porcine in vitro blood-brain barrier model. Brain Res. 1479:17–30. https://doi.org/10.1016/j.brainres.2012.08.031
pubmed: 22940232
Cascio L, Chen CF, Pauly R, Srikanth S, Jones K, Skinner CD, Stevenson RE, Schwartz CE, Boccuto L (2019) Abnormalities in the genes that encode large amino acid transporters increase the risk of autism spectrum disorder. Mol Genet Genomic Med.:e1036. https://doi.org/10.1002/mgg3.1036
Castro Dias M, Coisne C, Baden P, Enzmann G, Garrett L, Becker L, Hölter SM, German Mouse Clinic Consortium, Hrabě de Angelis M, Deutsch U, Engelhardt B (2019a) Claudin-12 is not required for blood-brain barrier tight junction function. Fluids Barriers CNS 16(1):30. https://doi.org/10.1186/s12987-019-0150-9
pubmed: 31511021
pmcid: 6739961
Castro Dias M, Coisne C, Lazarevic I, Baden P, Hata M, Iwamoto N, Francisco DMF, Vanlandewijck M, He L, Baier FA, Stroka D, Bruggmann R, Lyck R, Enzmann G, Deutsch U, Betsholtz C, Furuse M, Tsukita S, Engelhardt B (2019b) Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci Rep. 9(1):203. https://doi.org/10.1038/s41598-018-36731-3
pubmed: 30659216
pmcid: 6338742
Cecchelli R, Aday S, Sevin E, Almeida C, Culot M, Dehouck L, Coisne C, Engelhardt B, Dehouck MP, Ferreira L (2014) A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One. 9(6):e99733. https://doi.org/10.1371/journal.pone.0099733
pubmed: 24936790
pmcid: 4061029
Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, Arai K, Lo EH, Irimia D (2015) Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 5:15222. https://doi.org/10.1038/srep15222
pubmed: 26503597
pmcid: 4622078
Cho CF, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K, Chiocca EA, Agar NYR, Pentelute BL, Lawler SE (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 8:15623. https://doi.org/10.1038/ncomms15623
pubmed: 28585535
pmcid: 5467173
Clark PA, Al-Ahmad AJ, Qian T, Zhang RR, Wilson HK, Weichert JP, Palecek SP, Kuo JS, Shusta EV (2016) Analysis of cancer-targeting alkylphosphocholine analogue permeability characteristics using a human induced pluripotent stem cell blood-brain barrier model. Mol Pharm. 13(9):3341–3349. https://doi.org/10.1021/acs.molpharmaceut.6b00441
pubmed: 27421304
pmcid: 5014630
Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B (2005) Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest. 85(6):734–746. https://doi.org/10.1038/labinvest.3700281
pubmed: 15908914
Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol. 23(11):1024–1030. https://doi.org/10.1016/j.cub.2013.04.049
pubmed: 23684974
pmcid: 3676707
Cornford EM, Hyman S (2005) Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2(1):27–43. https://doi.org/10.1602/neurorx.2.1.27
pubmed: 15717055
pmcid: 539318
Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res. 241(1):49–55. https://doi.org/10.1016/0006-8993(82)91227-6
pubmed: 6980688
Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res. 951(2):243–254. https://doi.org/10.1016/s0006-8993(02)03167-0
pubmed: 12270503
Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D (2008) Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 28(2):312–328. https://doi.org/10.1038/sj.jcbfm.9600525
pubmed: 17609686
Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci. 12:40. https://doi.org/10.1186/1471-2202-12-40
pubmed: 21569296
pmcid: 3103473
Cucullo L, Hossain M, Tierney W, Janigro D (2013) A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci. 14:18. https://doi.org/10.1186/1471-2202-14-18
pubmed: 23388041
pmcid: 3598202
Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R (2008) An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 22(3):799–811. https://doi.org/10.1016/j.tiv.2007.12.016
pubmed: 18280105
Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol. 7(1):a020412. https://doi.org/10.1101/cshperspect.a020412
pubmed: 25561720
pmcid: 4292164
Dehouck M-P, Méresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and,mass-production method to study the blood-brain barrier in vitro. J Neurochem. 54(5):1798–1801. https://doi.org/10.1111/j.1471-4159.1990.tb01236.x
pubmed: 2182777
Deli MA, Abrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 25(1):59–127. https://doi.org/10.1007/s10571-004-1377-8
pubmed: 15962509
Delsing L, Dönnes P, Sánchez J, Clausen M, Voulgaris D, Falk A, Herland A, Brolén G, Zetterberg H, Hicks R, Synnergren J (2018) Barrier properties and transcriptome expression in human iPSC-derived models of the blood-brain barrier. Stem Cells. 36(12):1816–1827. https://doi.org/10.1002/stem.2908
pubmed: 30171748
Delsing L, Kallur T, Zetterberg H, Hicks R, Synnergren J (2019) Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood-brain barrier model. Fluids Barriers CNS. 16(1):27. https://doi.org/10.1186/s12987-019-0147-4
pubmed: 31462266
pmcid: 6714544
DeStefano JG, Jamieson JJ, Linville RM, Searson PC (2018) Benchmarking in vitro tissue-engineered blood-brain barrier models. Fluids Barriers CNS. 15(1):32. https://doi.org/10.1186/s12987-018-0117-2
pubmed: 30514389
pmcid: 6280508
Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 38(3):223–232. https://doi.org/10.1016/s0223-5234(03)00012-6
pubmed: 12667689
Drexler HG, Quentmeier H, Dirks WG, MacLeod RA (2002) Bladder carcinoma cell line ECV304 is not a model system for endothelial cells. In Vitro Cell Dev Biol Anim. 38(4):185–186. https://doi.org/10.1290/1071-2690(2002)038<0185:BCCLEI>2.0.CO;2
pubmed: 12197766
Ehrlich P (1885) Das Sauerstoffbedürfnis des Organismus. Eine farbanalytische Studie. Hirschwald-Verlag, Berlin
Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 10(1):33. https://doi.org/10.1186/2045-8118-10-33
pubmed: 24262108
pmcid: 4176484
Eisenblätter T, Hüwel S, Galla HJ (2003) Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res. 971(2):221–231. https://doi.org/10.1016/s0006-8993(03)02401-6
pubmed: 12706238
El-Bacha RS, Minn A (1999) Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol 45(1):15–23
pubmed: 10099836
Fabre KM, Delsing L, Hicks R, Colclough N, Crowther DC, Ewart L (2019) Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting. Adv Drug Deliv Rev. 140:129–135. https://doi.org/10.1016/j.addr.2018.09.009
pubmed: 30253201
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM (2019) iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Rep 12(3):474–487. https://doi.org/10.1016/j.stemcr.2019.01.009
Gaillard PJ, de Boer AG (2000) Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 12(2):95–102. https://doi.org/10.1016/s0928-0987(00)00152-4
pubmed: 11102736
Galla HJ (2018) Monocultures of primary porcine brain capillary endothelial cells: still a functional in vitro model for the blood-brain-barrier. J Control Release. 285:172–177. https://doi.org/10.1016/j.jconrel.2018.07.016
pubmed: 30005905
Gaston JD, Bischel LL, Fitzgerald LA, Cusick KD, Ringeisen BR, Pirlo RK (2017) Gene expression changes in long-term in vitro human blood-brain barrier models and their dependence on a transwell scaffold material. J Healthc Eng. 2017:5740975. https://doi.org/10.1155/2017/5740975
pubmed: 29317995
pmcid: 5727720
Geier EG, Chen EC, Webb A, Papp AC, Yee SW, Sadee W, Giacomini KM (2013) Profiling solute carrier transporters in the human blood-brain barrier. Clin Pharmacol Ther. 94(6):636–639. https://doi.org/10.1038/clpt.2013.175
pubmed: 24013810
pmcid: 3906042
Glavinas H, Méhn D, Jani M, Oosterhuis B, Herédi-Szabó K, Krajcsi P (2008) Utilization of membrane vesicle preparations to study drug–ABC transporter interactions. Expert Opin. Drug Metab. Toxicol. 4(6):721–732. https://doi.org/10.1517/17425255.4.6.721
pubmed: 18611113
Grifno GN, Farrell AM, Linville RM, Arevalo D, Kim JH, Gu L, Searson PC (2019) Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Sci Rep. 9(1):13957. https://doi.org/10.1038/s41598-019-50193-1
pubmed: 31562392
pmcid: 6764995
Ham O, Jin YB, Kim J, Lee MO (2020) Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem Biophys Res Commun. 521(1):84–90. https://doi.org/10.1016/j.bbrc.2019.10.079
pubmed: 31629471
Hartz AM, Bauer B, Fricker G, Miller DS (2004) Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol Pharmacol 66(3):387–394. https://doi.org/10.1124/mol.104.001503
pubmed: 15322229
Hartz AMS, Schulz JA, Sokola BS, Edelmann SE, Shen AN, Rempe RG, Zhong Y, Seblani NE, Bauer B (2018) Isolation of cerebral capillaries from fresh human brain tissue. J Vis Exp. 139. https://doi.org/10.3791/57346
Hempel C, Hyttel P, Kurtzhals JA (2014) Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria. J Cereb Blood Flow Metab. 34(7):1107–1110. https://doi.org/10.1038/jcbfm.2014.79
pubmed: 24756075
pmcid: 4083392
Herland A, van der Meer AD, FitzGerald EA, Park TE, Sleeboom JJ, Ingber DE (2016) Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One 11(3):e0150360. https://doi.org/10.1371/journal.pone.0150360
pubmed: 26930059
pmcid: 4773137
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES (2017) Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 14(1):9. https://doi.org/10.1186/s12987-017-0059-0
pubmed: 28407791
pmcid: 5390351
Huntley MA, Bien-Ly N, Daneman R, Watts RJ (2014) Dissecting gene expression at the blood-brain barrier. Front Neurosci. 8:355. https://doi.org/10.3389/fnins.2014.00355
pubmed: 25414634
pmcid: 4222230
Huttunen J, Peltokangas S, Gynther M, Natunen T, Hiltunen M, Auriola S, Ruponen M, Vellonen KS, Huttunen KM (2019) L-type amino acid transporter 1 (LAT1/Lat1)-utilizing prodrugs can improve the delivery of drugs into neurons, Astrocytes and Microglia. Sci Rep 9(1):12860. https://doi.org/10.1038/s41598-019-49009-z
pubmed: 31492955
pmcid: 6731241
Iartseva NM, Fedortseva RF (2008) Characteristics of the spontaneously transformed human endothelial cell line ECV304. I. Multiple chromosomal rearrangements in endothelial cells ECV304 [in Russian]. Tsitologiia 50(7):568–575
pubmed: 18771171
Joó F (1993) The blood-brain barrier in vitro: the second decade. Neurochem Int. 23(6):499–521. https://doi.org/10.1016/0197-0186(93)90098-p
pubmed: 8281119
Kakaroubas N, Brennan S, Keon M, Saksena NK (2019) Pathomechanisms of blood-brain barrier disruption in ALS. Neurosci J. 2019:2537698. https://doi.org/10.1155/2019/2537698
pubmed: 31380411
pmcid: 6652091
Kalaria RN, Hase Y (2019) Neurovascular ageing and age-related diseases. Subcell Biochem 91:477–499. https://doi.org/10.1007/978-981-13-3681-2_17
pubmed: 30888663
Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeability assay in the description of passive absorption processes. J Med Chem. 41:1007–1010. https://doi.org/10.1021/jm970530e
pubmed: 9544199
Kansy M, Avdeef A, Fischer H (2004) Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. Drug Discov Today Technol. 1(4):349–355. https://doi.org/10.1016/j.ddtec.2004.11.013
pubmed: 24981614
Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC (2018) Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 15(1):7. https://doi.org/10.1186/s12987-018-0092-7
pubmed: 29463314
pmcid: 5819713
Kim BJ, Bee OB, McDonagh MA, Stebbins MJ, Palecek SP, Doran KS, Shusta EV (2017) Modeling group B streptococcus and blood-brain barrier interaction by using induced pluripotent stem cell-derived brain endothelial cells. mSphere 2(6):e00398-17. https://doi.org/10.1128/mSphere.00398-17
pubmed: 29104935
pmcid: 5663983
Kim BJ, McDonagh MA, Deng L, Gastfriend BD, Schubert-Unkmeir A, Doran KS, Shusta EV (2019) Streptococcus agalactiae disrupts P-glycoprotein function in brain endothelial cells. Fluids Barriers CNS. 16(1):26. https://doi.org/10.1186/s12987-019-0146-5
pubmed: 31434575
pmcid: 6704684
Kimura I, Dohgu S, Takata F, Matsumoto J, Watanabe T, Iwao T, Yamauchi A, Kataoka Y (2019) Oligodendrocytes upregulate blood-brain barrier function through mechanisms other than the PDGF-BB/PDGFRα pathway in the barrier-tightening effect of oligodendrocyte progenitor cells. Neurosci Lett. 31:134594. https://doi.org/10.1016/j.neulet.2019.134594
Koutsiaris AG, Tachmitzi SV, Batis N, Kotoula MG, Karabatsas CH, Tsironi E, Chatzoulis DZ (2007) Volume flow wall shear stress quantification in the human conjunctival capillaries post-capillary venules in vivo. Biorheology 44(5-6):375–386
pubmed: 18401076
Krämer SD, Abbott NJ, Begley DJ (2001) Biological models to study blood-brain barrier permeation. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 127–153
Krizanac-Bengez L, Hossain M, Fazio V, Mayberg M, Janigro D (2006) Loss of flow induces leukocyte-mediated MMP/TIMP imbalance in dynamic in vitro blood-brain barrier model: role of pro-inflammatory cytokines. Am J Physiol Cell Physiol. 291(4):C740–C749. https://doi.org/10.1152/ajpcell.00516.2005
pubmed: 16707552
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 135(3):311–336. https://doi.org/10.1007/s00401-018-1815-1
pubmed: 29411111
pmcid: 6781630
Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale MS, Svendsen CN, Fraenkel E, Housman DE, Agalliu D, Thompson LM (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 19(7):1365–1377. https://doi.org/10.1016/j.celrep.2017.04.021
pubmed: 28514657
pmcid: 5646270
Linville RM, DeStefano JG, Sklar MB, Xu Z, Farrell AM, Bogorad MI, Chu C, Walczak P, Cheng L, Mahairaki V, Whartenby KA, Calabresi PA, Searson PC (2019) Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190-191:24–37. https://doi.org/10.1016/j.biomaterials.2018.10.023
pubmed: 30391800
Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 30(8):783–791. https://doi.org/10.1038/nbt.2247
pubmed: 22729031
pmcid: 3467331
Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014a) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160. https://doi.org/10.1038/srep04160
pubmed: 24561821
pmcid: 3932448
Lippmann ES, Estevez-Silva MC, Ashton RS (2014b) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells. 32(4):1032–1042. https://doi.org/10.1002/stem.1622
pubmed: 24357014
Lochhead JJ, Ronaldson PT, Davis TP (2017) Hypoxic stress and inflammatory pain disrupt blood-brain barrier tight junctions: implications for drug delivery to the central nervous system. AAPS J. 19(4):910–920. https://doi.org/10.1208/s12248-017-0076-6
pubmed: 28353217
pmcid: 5481481
Loryan I, Fridén M, Hammarlund-Udenaes M (2013) The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS. 10(1):6. https://doi.org/10.1186/2045-8118-10-6
pubmed: 23336814
pmcid: 3602653
Lu TM, Redmond D, Magdeldin T, Nguyen DH-T, Snead A, Sproul A, Xiang J, Shido K, Fine HA, Rosenwaks Z, Rafii A, Agalliu D, Lis R (2019) Human induced pluripotent stem cell-derived neuroectodermal epithelial cells mistaken for blood-brain barrier-forming endothelial cells. bioRxiv. https://doi.org/10.1101/699173 .
Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP (2002) Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res. 19(7):976–981. https://doi.org/10.1023/a:1016462205267
pubmed: 12180550
Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P (2002) Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos. 30(7):763–770. https://doi.org/10.1124/dmd.30.7.763
pubmed: 12065434
Mahringer A, Fricker G (2016) ABC transporters at the blood-brain barrier. Expert Opin Drug Metab Toxicol. 12(5):499–508. https://doi.org/10.1517/17425255.2016.1168804
pubmed: 26998936
Mantle JL, Min L, Lee KH (2016) Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol Pharm. 13(12):4191–4198. https://doi.org/10.1021/acs.molpharmaceut.6b00818
pubmed: 27934481
Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, Pacheco AR, Sheehy SP, Park TE, Dauth S, Mannix R, Budnik N, Shores K, Cho A, Nawroth JC, Segrè D, Budnik B, Ingber DE, Parker KK (2018) A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 36(9):865–874. https://doi.org/10.1038/nbt.4226
pubmed: 30125269
Martinez A, Al-Ahmad AJ (2019) Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett. 304:39–49. https://doi.org/10.1016/j.toxlet.2018.12.013
pubmed: 30605748
Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Förstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, Schubert-Unkmeir A (2019) Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection. Front Microbiol. 10:1181. https://doi.org/10.3389/fmicb.2019.01181
pubmed: 31191497
pmcid: 6548865
Megard I, Garrigues A, Orlowski S, Jorajuria S, Clayette P, Ezan E, Mabondzo A (2002) A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation. Brain Res. 927(2):153–167. https://doi.org/10.1016/s0006-8993(01)03337-6
pubmed: 11821009
Meza D, Shanmugavelayudam SK, Mendoza A, Sanchez C, Rubenstein DA, Yin W (2017) Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thromb Res. 150:44–50. https://doi.org/10.1016/j.thromres.2016.12.003
pubmed: 28013181
Mihajlica N, Betsholtz C, Hammarlund-Udenaes M (2018) Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier. Eur J Pharm Sci. 122:77–84. https://doi.org/10.1016/j.ejps.2018.06.018
pubmed: 29933077
Mizee MR, Nijland PG, van der Pol SM, Drexhage JA, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries HE (2014) Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 128(5):691–703. https://doi.org/10.1007/s00401-014-1335-6
pubmed: 25149081
Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer's disease: a matter of blood-brain barrier dysfunction? J Exp Med. 214(11):3151–3169. https://doi.org/10.1084/jem.20171406
pubmed: 29061693
pmcid: 5679168
Morris ME, Rodriguez-Cruz V, Felmlee MA (2017) SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J. 19(5):1317–1331. https://doi.org/10.1208/s12248-017-0110-8
pubmed: 28664465
pmcid: 6467070
Motallebnejad P, Thomas A, Swisher SL, Azarin SM (2019) An isogenic hiPSC-derived BBB-on-a-chip. Biomicrofluidics. 13(6):064119. https://doi.org/10.1063/1.5123476
pubmed: 31768205
pmcid: 6874510
Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, Gimlin K, Kotoda M, Korai M, Aydin S, Batugal A, Cabangcala AC, Schupp PG, Oldham MC, Hashimoto T, Noble-Haeusslein LJ, Daneman R (2019) Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat Neurosci. 22(11):1892–1902. https://doi.org/10.1038/s41593-019-0497-x
pubmed: 31611708
pmcid: 6858546
Mysiorek C, Culot M, Dehouck L, Derudas B, Staels B, Bordet R, Cecchelli R, Fenart L, Berezowski V (2009) Peroxisome-proliferator-activated receptor-alpha activation protects brain capillary endothelial cells from oxygen-glucose deprivation-induced hyperpermeability in the blood-brain barrier. Curr Neurovasc Res. 6(3):181–193. https://doi.org/10.2174/156720209788970081
pubmed: 19534718
Neal EH, Marinelli NA, Shi Y, McClatchey PM, Balotin KM, Gullett DR, Hagerla KA, Bowman AB, Ess KC, Wikswo JP, Lippmann ES (2019) A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Rep 12(6):1380–1388. https://doi.org/10.1016/j.stemcr.2019.05.008
Neuhaus W (2017) Human induced pluripotent stem cell based in vitro models of the blood-brain barrier: the future standard? Neural Regen Res. 12(10):1607–1609. https://doi.org/10.4103/1673-5374.217326
pubmed: 29171420
pmcid: 5696836
Neuhaus W, Noe CR (2009) Transport at the blood-brain barrier. In: Ecker GF, Chiba P (eds) Transporters as drug carriers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 263–298
Neuhaus W, Bogner E, Wirth M, Trzeciak J, Lachmann B, Gabor F, Noe CR (2006a) A novel tool to characterize paracellular transport: the APTS-dextran ladder. Pharm Res. 23(7):1491–1501. https://doi.org/10.1007/s11095-006-0256-z
pubmed: 16779707
Neuhaus W, Lauer R, Oelzant S, Fringeli UP, Ecker GF, Noe CR (2006b) A novel flow based hollow-fiber blood-brain barrier in vitro model with immortalised cell line PBMEC/C1-2. J Biotechnol. 125(1):127–141. https://doi.org/10.1016/j.jbiotec.2006.02.019
pubmed: 16730091
Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C (2014) The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci. 8:352. https://doi.org/10.3389/fncel.2014.00352
pubmed: 25389390
pmcid: 4211409
Neuhaus W, Piontek A, Protze J, Eichner M, Mahringer A, Subileau EA, Lee IM, Schulzke JD, Krause G, Piontek J (2018) Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials. 161:129–143. https://doi.org/10.1016/j.biomaterials.2018.01.028
pubmed: 29421550
Nishanth G, Schlüter D (2019) Blood-brain barrier in cerebral malaria: pathogenesis and therapeutic intervention. Trends Parasitol. 35(7):516–528. https://doi.org/10.1016/j.pt.2019.04.010
pubmed: 31147271
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 161(3):653–660. https://doi.org/10.1083/jcb.200302070
pubmed: 12743111
pmcid: 2172943
Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, Murphy SV, Jackson JD, Atala AJ (2018) Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci Rep. 8(1):7413. https://doi.org/10.1038/s41598-018-25603-5
pubmed: 29743549
pmcid: 5943588
Ohshima M, Kamei S, Fushimi H, Mima S, Yamada T, Yamamoto T (2019) Prediction of drug permeability using in vitro blood-brain barrier models with human induced pluripotent stem cell-derived brain microvascular endothelial cells. Biores Open Access. 8(1):200–209. https://doi.org/10.1089/biores.2019.0026
pubmed: 31737437
pmcid: 6854432
Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1(5):409–417. https://doi.org/10.1002/ana.410010502
pubmed: 617259
Ott MJ, Olson JL, Ballermann BJ (1995) Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium 3:21–30
Ozgür B, Saaby L, Langthaler K, Brodin B (2018) Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates. Eur J Pharm Sci. 112:112–121. https://doi.org/10.1016/j.ejps.2017.11.007
pubmed: 29146563
Page S, Munsell A, Al-Ahmad AJ (2016) Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS. 13(1):16. https://doi.org/10.1186/s12987-016-0042-1
pubmed: 27724968
pmcid: 5057206
Page S, Raut S, Al-Ahmad A (2019) Oxygen-glucose deprivation/reoxygenation-induced barrier disruption at the human blood-brain barrier is partially mediated through the HIF-1 pathway. Neuromolecular Med. 21(4):414–431. https://doi.org/10.1007/s12017-019-08531-z
pubmed: 30911877
Pamies D, Bal-Price A, Chesné C, Coecke S, Dinnyes A, Eskes C, Grillari R, Gstraunthaler G, Hartung T, Jennings P, Leist M, Martin U, Passier R, Schwamborn JC, Stacey GN, Ellinger-Ziegelbauer H, Daneshian M (2018) Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX 35(3):353–378. https://doi.org/10.14573/altex.1710081
pubmed: 29697851
Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today. 12(1-2):54–61. https://doi.org/10.1016/j.drudis.2006.10.013
pubmed: 17198973
Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, Sanchez H, McCrea HJ, Goumnerova LC, Song HW, Palecek SP, Shusta E, Ingber DE (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun. 10(1):2621. https://doi.org/10.1038/s41467-019-10588-0
pubmed: 31197168
pmcid: 6565686
Patel R, Alahmad AJ (2016) Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS. 13:6. https://doi.org/10.1186/s12987-016-0030-5
pubmed: 27068644
pmcid: 4828815
Patel R, Page S, Al-Ahmad AJ (2017) Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem. 142(1):74–88. https://doi.org/10.1111/jnc.14040
pubmed: 28397247
Patel R, Hossain MA, German N, Al-Ahmad AJ (2018) Gliotoxin penetrates and impairs the integrity of the human blood-brain barrier in vitro. Mycotoxin Res. 34(4):257–268. https://doi.org/10.1007/s12550-018-0320-7
pubmed: 30006720
Pavan B, Paganetto G, Rossi D, Dalpiaz A (2014) Multidrug resistance in cancer or inefficacy of neuroactive agents: innovative strategies to inhibit or circumvent the active efflux transporters selectively. Drug Discov Today. 19(10):1563–1571. https://doi.org/10.1016/j.drudis.2014.06.004
pubmed: 24929222
Pekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia. 22(4):390–400
pubmed: 9517571
Peterson DR, Hawkins RA (1998) Isolation and behaviour of plasma membrane vesicles made from cerebral capillary endothelial cells. In: Partrigde WM (ed) Introduction to the blood-brain barrier. Cambridge University Press, Cambrigde, pp 62–70
Prabhakarpandian B, Shen MC, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 13(6):1093–1101. https://doi.org/10.1039/c2lc41208j
pubmed: 23344641
pmcid: 3613157
Praça C, Rosa SC, Sevin E, Cecchelli R, Dehouck MP, Ferreira LS (2019) Derivation of brain capillary-like endothelial cells from human pluripotent stem cell-derived endothelial progenitor cells. Stem Cell Rep 13(4):599–611. https://doi.org/10.1016/j.stemcr.2019.08.002
Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 355(3):607–619. https://doi.org/10.1007/s00441-013-1779-3
pubmed: 24435645
pmcid: 3975704
Qi D, Wu S, Lin H, Kuss MA, Lei Y, Krasnoslobodtsev A, Ahmed S, Zhang C, Kim HJ, Jiang P, Duan B (2018) Establishment of a human iPSC- and nanofiber-based microphysiological blood-brain barrier system. ACS Appl Mater Interf 10(26):21825–21835. https://doi.org/10.1021/acsami.8b03962
Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP (2017) Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv. 3(11):e1701679. https://doi.org/10.1126/sciadv.1701679
pubmed: 29134197
pmcid: 5677350
Ribatti D, Nico B, Crivellato E, Artico M (2006) Development of the blood-brain barrier: a historical point of view. Anat Rec B New Anat. 289(1):3–8. https://doi.org/10.1002/ar.b.20087
pubmed: 16437552
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, Haqqani AS, Ly D, Zachar P, Baumann E, Ball M, Huang J, Rukhlova M, Martina M, Liu Q, Stanimirovic D, Jezierski A, Bani-Yaghoub M (2018) A novel human induced pluripotent stem cell blood-brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 8(1):1873. https://doi.org/10.1038/s41598-018-19522-8
pubmed: 29382846
pmcid: 5789839
Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, Yan AT, Cwirla SE, Grindstaff KK (2008) Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 155(2):423–438. https://doi.org/10.1016/j.neuroscience.2008.06.015
pubmed: 18619525
Roux GL, Jarray R, Guyot AC, Pavoni S, Costa N, Théodoro F, Nassor F, Pruvost A, Tournier N, Kiyan Y, Langer O, Yates F, Deslys JP, Mabondzo A (2019) Proof-of-concept study of drug brain permeability between in vivo human brain and an in vitro iPSCs-human blood-brain barrier model. Sci Rep. 9(1):16310. https://doi.org/10.1038/s41598-019-52213-6
pubmed: 31690750
pmcid: 6831611
Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM (2017) Fluid shear stress induces upregulation of COX-2 and PGI
pubmed: 28011582
Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L (2006) Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res. 1109(1):1–13. https://doi.org/10.1016/j.brainres.2006.06.027
pubmed: 16857178
Santa-Maria AR, Walter FR, Valkai S, Brás AR, Mészáros M, Kincses A, Klepe A, Gaspar D, Castanho MARB, Zimányi L, Dér A, Deli MA (2019) Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models. Biochim Biophys Acta Biomembr. 1861(9):1579–1591. https://doi.org/10.1016/j.bbamem.2019.07.008
pubmed: 31301276
Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer HC (2014) The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci. 8:404. https://doi.org/10.3389/fnins.2014.00404
pubmed: 25565938
pmcid: 4267212
Scalise M, Galluccio M, Console L, Pochini L, Indiveri C (2018) The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 6:243. https://doi.org/10.3389/fchem.2018.00243
pubmed: 29988369
pmcid: 6023973
Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 77(4):491–502. https://doi.org/10.1016/0092-8674(94)90212-7
pubmed: 7910522
Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, De Vivo DC (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet. 18(2):188–191. https://doi.org/10.1038/ng0298-188
pubmed: 9462754
Setiadi A, Korim WS, Elsaafien K, Yao ST (2018) The role of the blood-brain barrier in hypertension. Exp Physiol. 103(3):337–342. https://doi.org/10.1113/EP086434
pubmed: 28986948
Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 8(4):1332–1341. https://doi.org/10.1021/mp200129p
pubmed: 21707071
Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, Kim DY, Kamm RD, Tanzi RE (2019) Blood-brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv Sci 6(20):1900962. https://doi.org/10.1002/advs.201900962
Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 6(7):393–403. https://doi.org/10.1038/nrneurol.2010.74
pubmed: 20551947
pmcid: 3625732
Soldner ELB, Hartz AMS, Akanuma SI, Pekcec A, Doods H, Kryscio RJ, Hosoya KI, Bauer B (2019) Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J. 33(12):13966–13981. https://doi.org/10.1096/fj.201901460RR
pubmed: 31638830
pmcid: 6894061
Song L, Yuan X, Jones Z, Griffin K, Zhou Y, Ma T, Li Y (2019) Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 9(1):5977. https://doi.org/10.1038/s41598-019-42439-9
pubmed: 30979929
pmcid: 6461701
Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero IA, Male D (2015) A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. Version 2. F1000Res 4:1279. https://doi.org/10.12688/f1000research.7142.2
pubmed: 26870320
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV (2019) Involvement of epigenetic mechanisms and non-coding RNAs in blood-brain barrier and neurovascular unit injury and recovery after stroke. Front Neurosci. 13:864. https://doi.org/10.3389/fnins.2019.00864
pubmed: 31543756
pmcid: 6732937
Stanness KA, Guatteo E, Janigro D (1996) A dynamic model of the blood-brain barrier “in vitro”. Neurotoxicology 17(2):481–496
pubmed: 8856743
Stanness KA, Westrum LE, Fornaciari E, Mascagni P, Nelson JA, Stenglein SG, Myers T, Janigro D (1997) Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res. 771(2):329–342. https://doi.org/10.1016/s0006-8993(97)00829-9
pubmed: 9401753
Stanness KA, Neumaier JF, Sexton TJ, Grant GA, Emmi A, Maris DO, Janigro D (1999) A new model of the blood--brain barrier: co-culture of neuronal, endothelial and glial cells under dynamic conditions. Neuroreport. 10(18):3725–3731. https://doi.org/10.1097/00001756-199912160-00001
pubmed: 10716199
Stebbins MJ, Lippmann ES, Faubion MG, Daneman R, Palecek SP, Shusta EV (2018) Activation of RARα, RARγ, or RXRα increases barrier tightness in human induced pluripotent stem cell-derived brain endothelial cells. Biotechnol J 13(2). https://doi.org/10.1002/biot.201700093
Suda K, Rothen-Rutishauser B, Günthert M, Wunderli-Allenspach H (2001) Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: endothelial versus epithelial features. In Vitro Cell Dev Biol Anim. 37(8):505–514. https://doi.org/10.1290/1071-2690(2001)037<0505:PCOHUV>2.0.CO;2
pubmed: 11669284
Suhy AM, Webb A, Papp AC, Geier EG, Sadee W (2017) Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq. Eur J Pharm Sci. 103:47–51. https://doi.org/10.1016/j.ejps.2017.02.010
pubmed: 28188910
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 14(3):133–150. https://doi.org/10.1038/nrneurol.2017.188
pubmed: 29377008
pmcid: 5829048
Swissa E, Serlin Y, Vazana U, Prager O, Friedman A (2019) Blood-brain barrier dysfunction in status epileptics: mechanisms and, ,and role in epileptogenesis. Epilepsy Behav. 8:106285. https://doi.org/10.1016/j.yebeh.2019.04.038
Takahashi K, Sawasaki Y, Hata J, Mukai K, Goto T (1990) Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol. 26(3 Pt 1):265–274. https://doi.org/10.1007/bf02624456
pubmed: 1690702
Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG, Novarino G (2016) Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167(6):1481–1494.e18. https://doi.org/10.1016/j.cell.2016.11.013
pubmed: 27912058
pmcid: 5554935
Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, Garcia VJ, Ho R, Yucer N, Qian T, Lim RG, Wu J, Thompson LM, Spivia WR, Chen Z, van Eyk J, Palecek SP, Refetoff S, Shusta EV, Svendsen CN (2017) Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood-brain barrier. Cell Stem Cell 20(6):831–843.e5. https://doi.org/10.1016/j.stem.2017.04.002
pubmed: 28526555
pmcid: 6659720
Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, Wen N, Spivia WR, Chen Z, Van Eyk J, Svendsen CN (2019) Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24(6):995–1005.e6. https://doi.org/10.1016/j.stem.2019.05.011
pubmed: 31173718
Veszelka S, Tóth A, Walter FR, Tóth AE, Gróf I, Mészáros M, Bocsik A, Hellinger É, Vastag M, Rákhely G, Deli MA (2018) Comparison of a rat primary cell-based blood-brain barrier model with epithelial and brain endothelial cell lines: gene expression and drug transport. Front Mol Neurosci. 11:166. https://doi.org/10.3389/fnmol.2018.00166
pubmed: 29872378
pmcid: 5972182
Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, Kletter K, Löscher W, Müller M, Zeitlinger M, Langer O (2009) A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med. 50(12):1954–1961. https://doi.org/10.2967/jnumed.109.063289
pubmed: 19910428
pmcid: 3690436
Wang X, Xu B, Xiang M, Yang X, Liu Y, Liu X, Shen Y (2019) Advances on fluid shear stress regulating blood-brain barrier. Microvasc Res. 128:103930. https://doi.org/10.1016/j.mvr.2019.103930
pubmed: 31639383
Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19(13):1872–1884. https://doi.org/10.1096/fj.04-3458fje
pubmed: 16141364
Wevers NR, Kasi DG, Gray T, Wilschut KJ, Smith B, van Vught R, Shimizu F, Sano Y, Kand AT, Marsh G, Trietsch SJ, Vulto P, Lanz HL, Obermeier B (2018) A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 15(1):23. https://doi.org/10.1186/s12987-018-0108-3
pubmed: 30165870
pmcid: 6117964
Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK (2012) Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices. 14(6):1141–1148. https://doi.org/10.1007/s10544-012-9680-5
pubmed: 22821236
Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007
pubmed: 27425887
pmcid: 5600438
Zenker D, Begley D, Bratzke H, Rübsamen-Waigmann H, von Briesen H (2003) Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol. 551(Pt 3):1023–1032. https://doi.org/10.1113/jphysiol.2003.045880
pubmed: 12829721
pmcid: 2343297
Zobel K, Hansen U, Galla HJ (2016) Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 365(2):233–245. https://doi.org/10.1007/s00441-016-2397-7
pubmed: 27053246