Suppression of cancer proliferation and metastasis by a versatile nanomedicine integrating photodynamic therapy, photothermal therapy, and enzyme inhibition.
Photodynamic therapy
Photosensitizer
Photothermal therapy
Pro-cancer protease inhibitor
Synergetic anticancer therapy
Journal
Acta biomaterialia
ISSN: 1878-7568
Titre abrégé: Acta Biomater
Pays: England
ID NLM: 101233144
Informations de publication
Date de publication:
01 09 2020
01 09 2020
Historique:
received:
21
01
2020
revised:
10
06
2020
accepted:
11
06
2020
pubmed:
21
6
2020
medline:
15
5
2021
entrez:
21
6
2020
Statut:
ppublish
Résumé
Cancer therapeutics are varied and target diverse processes in cancer progression. Photodynamic therapy (PDT), photothermal therapy (PTT), and the inhibition of pro-cancer proteases are non-invasive anticancer therapeutics that attract increasing attentions for their enhanced specificities and milder systemic toxicities compared to traditional therapeutics. These modalities offer advantages to compensate for the shortcomings of their counterparts. For instance, PDT or PTT efficiently eliminates locally confined tumor cells while exhibiting no effect on metastatic tumor cells. In contrast, the inhibition of pro-cancer proteases systemically suppresses the proliferation and metastasis of cancer cells but does not eradicate existing cancer cells. To synergize these therapeutics, we hereby report a versatile nanoparticle that integrates the effects of PDT, PTT, and enzyme-inhibition. This nanoparticle (CIKP-NP) was synthesized by covalently or non-covalently modifying a photothermal nanoparticle with a photosensitizer, a pro-cancer protease inhibitor, and an albumin-binding molecule. After confirming the PDT, PTT, albumin-binding, and enzyme-inhibition properties at the molecular level, we demonstrated that CIKP-NP killed tumor cells through PDT or PTT and suppressed tumor cell invasion through enzyme-inhibition. In addition, through a breast cancer xenograft mouse model, we demonstrated that CIKP-NP suppressed tumor growth by PDT or PTT effect. Notably, the synergism of PDT and PTT significantly enhanced its anticancer efficiency. Furthermore, CIKP-NP significantly suppressed cancer metastasis in a lung metastatic mouse model. Last, biodistribution and the in vivo retention of CIKP-NP confirmed the tumor-targeting property. Beyond demonstrating the anti-tumor and anti-metastatic efficacy of CIKP-NP, our study also suggests a new strategy to synergize multiple anticancer therapeutics.
Identifiants
pubmed: 32562802
pii: S1742-7061(20)30351-2
doi: 10.1016/j.actbio.2020.06.021
pii:
doi:
Substances chimiques
Photosensitizing Agents
0
Gold
7440-57-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
541-553Informations de copyright
Copyright © 2020. Published by Elsevier Ltd.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.