Prevalence of PD-L1 expression in head and neck squamous precancerous lesions: a systematic review and meta-analysis.

head and neck immunohistochemistry premalignant lesion programmed death-ligand 1 systematic review

Journal

Head & neck
ISSN: 1097-0347
Titre abrégé: Head Neck
Pays: United States
ID NLM: 8902541

Informations de publication

Date de publication:
10 2020
Historique:
received: 31 01 2020
revised: 23 04 2020
accepted: 30 05 2020
pubmed: 23 6 2020
medline: 22 6 2021
entrez: 23 6 2020
Statut: ppublish

Résumé

Studies concerning programmed death-ligand 1 (PD-L1) expression in precancerous lesions of head and neck (HN) region have shown variable results. We systematically reviewed the published evidence on PD-L1 expression in HN precancerous lesions. Of 1058 original articles, 14 were included in systematic review and 9 in meta-analysis. The pooled estimate of PD-L1 expression was 48.25% (confidence interval [CI] 21.07-75.98, I PD-L1 expression could reflect a point of balance between host immune response and cancer escape ability. High heterogeneity and moderate quality suggest that further studies with larger sample size and more rigorous case selection will allow more precise assessment of PD-L1 expression in HN precancerous lesions.

Sections du résumé

BACKGROUND
Studies concerning programmed death-ligand 1 (PD-L1) expression in precancerous lesions of head and neck (HN) region have shown variable results.
METHODS
We systematically reviewed the published evidence on PD-L1 expression in HN precancerous lesions.
RESULTS
Of 1058 original articles, 14 were included in systematic review and 9 in meta-analysis. The pooled estimate of PD-L1 expression was 48.25% (confidence interval [CI] 21.07-75.98, I
CONCLUSIONS
PD-L1 expression could reflect a point of balance between host immune response and cancer escape ability. High heterogeneity and moderate quality suggest that further studies with larger sample size and more rigorous case selection will allow more precise assessment of PD-L1 expression in HN precancerous lesions.

Identifiants

pubmed: 32567746
doi: 10.1002/hed.26339
doi:

Substances chimiques

B7-H1 Antigen 0

Types de publication

Journal Article Meta-Analysis Review Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3018-3030

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1-10. https://doi.org/10.1016/j.immuni.2013.07.012.
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-571. https://doi.org/10.1038/nature13954.
Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563-567. https://doi.org/10.1038/nature14011.
Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542-e551. https://doi.org/10.1016/S1470-2045(16)30406-5.
Rimm D, Han G, Taube JM, et al. ORAL01.01: a prospective, multi-institutional assessment of four assays for PD-L1 expression in NSCLC by immunohistochemistry. J Thorac Oncol. 2016;11(11):S249. https://doi.org/10.1016/j.jtho.2016.09.006.
O’Malley DP, Yang Y, Boisot S, et al. Immunohistochemical detection of PD-L1 among diverse human neoplasms in a reference laboratory: observations based upon 62,896 cases. Mod Pathol. 2019;32(7):929-942. https://doi.org/10.1038/s41379-019-0210-3.
Torlakovic E, Lim HJ, Adam J, et al. “Interchangeability” of PD-L1 immunohistochemistry assays: a meta-analysis of diagnostic accuracy. Mod Pathol. 2020;33(1):4-17. https://doi.org/10.1038/s41379-019-0327-4.
Chinn Z, Stoler MH, Mills AM. PD-L1 and IDO expression in cervical and vulvar invasive and intraepithelial squamous neoplasias: implications for combination immunotherapy. Histopathology. 2019;74(2):256-268. https://doi.org/10.1111/his.13723.
Mezache L, Paniccia B, Nyinawabera A, Nuovo GJ. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol. 2015;28(12):1594-1602. https://doi.org/10.1038/modpathol.2015.108.
Agahozo MC, van Bockstal MR, Groenendijk FH, van den Bosch TPP, Westenend PJ, van Deurzen CHM. Ductal carcinoma in situ of the breast: immune cell composition according to subtype. Mod Pathol. 2019;33:196-205. https://doi.org/10.1038/s41379-019-0331-8.
Hendry S, Pang J-MB, Byrne DJ, et al. Relationship of the breast ductal carcinoma in situ immune microenvironment with clinicopathological and genetic features. Clin Cancer Res. 2017;23(17):5210-5217. https://doi.org/10.1158/1078-0432.CCR-17-0743.
Yang B, Liu T, Qu Y, et al. Progresses and perspectives of anti-PD-1/PD-L1 antibody therapy in head and neck cancers. Front Oncol. 2018;8:563. https://doi.org/10.3389/fonc.2018.00563.
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956-965. https://doi.org/10.1016/S1470-2045(16)30066-3.
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915-1928. https://doi.org/10.1016/S0140-6736(19)32591-7.
Harrington KJ, Ferris RL, Blumenschein G, et al. Nivolumab versus standard, single-agent therapy of investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol. 2017;18(8):1104-1115. https://doi.org/10.1016/S1470-2045(17)30421-7.
Ferrarotto R, Bell D, Rubin ML, et al. Checkpoint inhibitors assessment in oropharynx cancer (CIAO): safety and interim results. J Clin Oncol. 2019;37(15_suppl):6008. https://doi.org/10.1200/JCO.2019.37.15_suppl.6008.
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339(jul21 1):b2700. https://doi.org/10.1136/bmj.b2700.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. https://doi.org/10.1186/s13643-016-0384-4.
Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos M. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonradomised studies in meta-analyses; 2016. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139-145. https://doi.org/10.1016/j.cct.2015.09.002.
Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950;21(4):607-611. https://doi.org/10.1214/aoms/1177729756.
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-1558. https://doi.org/10.1002/sim.1186.
Viechtbauer W, Cheung MW-L. Outlier and influence diagnostics for meta-analysis. Res Synth Methods. 2010;1(2):112-125. https://doi.org/10.1002/jrsm.11.
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634. https://doi.org/10.1136/bmj.315.7109.629.
Chen X-J, Tan Y-Q, Zhang N, He M-J, Zhou G. Expression of programmed cell death-ligand 1 in oral squamous cell carcinoma and oral leukoplakia is associated with disease progress and CD8+ tumor-infiltrating lymphocytes. Pathol Res Pract. 2019;215(6):152418. https://doi.org/10.1016/j.prp.2019.04.010.
Kouketsu A, Sato I, Oikawa M, et al. Expression of immunoregulatory molecules PD-L1 and PD-1 in oral cancer and precancerous lesions: a cohort study of Japanese patients. J Cranio-Maxillofacial Surg. 2019;47(1):33-40. https://doi.org/10.1016/j.jcms.2017.04.013.
Wu L, Deng W-W, Yu G-T, et al. B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma. Cancer Immunol Immunother. 2016;65(9):1035-1045. https://doi.org/10.1007/s00262-016-1867-9.
Wu L, Deng W-W, Huang C-F, et al. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol Immunother. 2017;66(5):627-636. https://doi.org/10.1007/s00262-017-1968-0.
Wu C-C, Xiao Y, Li H, et al. Overexpression of FAM3C is associated with poor prognosis in oral squamous cell carcinoma. Pathol Res Pract. 2019;215(4):772-778. https://doi.org/10.1016/j.prp.2019.01.019.
Yagyuu T, Hatakeyama K, Imada M, et al. Programmed death ligand 1 (PD-L1) expression and tumor microenvironment: implications for patients with oral precancerous lesions. Oral Oncol. 2017;68:36-43. https://doi.org/10.1016/j.oraloncology.2017.03.006.
Yang L-L, Wu L, Yu G-T, Zhang W-F, Liu B, Sun Z-J. CD317 signature in head and neck cancer indicates poor prognosis. J Dent Res. 2018;97(7):787-794. https://doi.org/10.1177/0022034518758604.
Yang Q-C, Wu CC, Cao L-Y, et al. Increased expression of LAMTOR5 predicts poor prognosis and is associated with lymph node metastasis of head and neck squamous cell carcinoma. Int J Med Sci. 2019;16(6):783-792. https://doi.org/10.7150/ijms.33415.
Sieviläinen M, Passador-Santos F, Almahmoudi R, et al. Immune checkpoints indoleamine 2,3-dioxygenase 1 and programmed death-ligand 1 in oral mucosal dysplasia. J Oral Pathol Med. 2018;47(8):773-780. https://doi.org/10.1111/jop.12737.
Stasikowska-Kanicka O, Wągrowska-Danilewicz M, Danilewicz M. CD8+ and CD163+ infiltrating cells and PD-L1 immunoexpression in oral leukoplakia and oral carcinoma. APMIS. 2018;126(9):732-738. https://doi.org/10.1111/apm.12881.
Gonçalves AS, Mosconi C, Jaeger F, et al. Overexpression of immunomodulatory mediators in oral precancerous lesions. Hum Immunol. 2017;78(11-12):752-757. https://doi.org/10.1016/j.humimm.2017.09.003.
de Lopes MLDS, Gonzaga AKG, Mosconi C, et al. Immune response and evasion mechanisms in lip carcinogenesis: an immunohistochemical study. Arch Oral Biol 2019;98:99-107. doi:https://doi.org/10.1016/j.archoralbio.2018.09.017
William WN, Uraoka N, Peng SA, et al. Immune profiling of oral pre-malignant lesions (OPLs): an Erlotinib Prevention of Oral Cancer (EPOC) study biobank analysis. J Clin Oncol. 2017;35(15_suppl):1545. https://doi.org/10.1200/JCO.2017.35.15_suppl.1545.
Glass S, Reich R, Freedman P. A pilot study of PD-1 and PD-L1 expression in a spectrum of oral dysplasias and oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(3):e200. https://doi.org/10.1016/j.oooo.2017.06.008.
Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838-3845. https://doi.org/10.1200/JCO.2016.68.1478.
Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer. 2018;119(2):153-159. https://doi.org/10.1038/s41416-018-0131-9.
Patel JJ, Levy DA, Nguyen SA, Knochelmann HM, Day TA. Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma-systematic review and meta-analysis. Head Neck. 2019;42:774-786. https://doi.org/10.1002/hed.26036.
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565-1570. https://doi.org/10.1126/science.1203486.
Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16-25. https://doi.org/10.1016/j.coi.2014.01.004.
Iocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck. 2020;42(3):539-555. https://doi.org/10.1002/hed.26006.
Concha-Benavente F, Srivastava RM, Trivedi S, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFN that induce PD-L1 expression in head and neck cancer. Cancer Res. 2016;76(5):1031-1043. https://doi.org/10.1158/0008-5472.CAN-15-2001.
Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: recent advances and future directions. Oral Oncol. 2019;99:104460. https://doi.org/10.1016/j.oraloncology.2019.104460.

Auteurs

Ilaria Girolami (I)

Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.

Liron Pantanowitz (L)

Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.

Enrico Munari (E)

Department of Pathology, Sacro Cuore Don Calabria Hospital, Italy.

Maurizio Martini (M)

Division of Anatomic Pathology and Histology, Catholic University-Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.

Riccardo Nocini (R)

Department of Otorhinolaringology and Head & Neck Surgery, University and Hospital Trust of Verona, Verona, Italy.

Nicola Bisi (N)

Department of Otorhinolaringology and Head & Neck Surgery, University and Hospital Trust of Verona, Verona, Italy.

Gabriele Molteni (G)

Department of Otorhinolaringology and Head & Neck Surgery, University and Hospital Trust of Verona, Verona, Italy.

Daniele Marchioni (D)

Department of Otorhinolaringology and Head & Neck Surgery, University and Hospital Trust of Verona, Verona, Italy.

Claudio Ghimenton (C)

Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.

Matteo Brunelli (M)

Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.

Albino Eccher (A)

Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH