End-to-End Approach for Structuring Radiology Reports.
Information Extraction
Natural Language Processing
Radiology Report
Journal
Studies in health technology and informatics
ISSN: 1879-8365
Titre abrégé: Stud Health Technol Inform
Pays: Netherlands
ID NLM: 9214582
Informations de publication
Date de publication:
16 Jun 2020
16 Jun 2020
Historique:
entrez:
24
6
2020
pubmed:
24
6
2020
medline:
7
7
2020
Statut:
ppublish
Résumé
Radiology reports include various types of clinical information that are used for patient care. Reports are also expected to have secondary uses (e.g., clinical research and the development of decision support systems). For secondary use, it is necessary to extract information from the report and organize it in a structured format. Our goal is to build an application to transform radiology reports written in a free-text form into a structured format. To this end, we propose an end-to-end method that consists of three elements. First, we built a neural network model to extract clinical information from the reports. We experimented on a dataset of chest X-ray reports. Second, we transformed the extracted information into a structured format. Finally, we built a tool that enabled the transformation of terms in reports to standard forms. Through our end-to-end method, we could obtain a structured radiology dataset that was easy to access for secondary use.
Identifiants
pubmed: 32570375
pii: SHTI200151
doi: 10.3233/SHTI200151
doi:
Types de publication
Journal Article
Langues
eng