Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 06 2020
Historique:
received: 28 10 2019
accepted: 04 06 2020
entrez: 24 6 2020
pubmed: 24 6 2020
medline: 29 8 2020
Statut: epublish

Résumé

Resistance to targeted cancer drugs is thought to result from selective pressure exerted by a high drug dose. Partial inhibition of multiple components in the same oncogenic signalling pathway may add up to complete pathway inhibition, while decreasing the selective pressure on each component to acquire a resistance mutation. We report here testing of this Multiple Low Dose (MLD) therapy model in EGFR mutant NSCLC. We show that as little as 20% of the individual effective drug doses is sufficient to completely block MAPK signalling and proliferation when used in 3D (RAF + MEK + ERK) or 4D (EGFR + RAF + MEK + ERK) inhibitor combinations. Importantly, EGFR mutant NSCLC cells treated with MLD therapy do not develop resistance. Using several animal models, we find durable responses to MLD therapy without associated toxicity. Our data support the notion that MLD therapy could deliver clinical benefit, even for those having acquired resistance to third generation EGFR inhibitor therapy.

Identifiants

pubmed: 32572029
doi: 10.1038/s41467-020-16952-9
pii: 10.1038/s41467-020-16952-9
pmc: PMC7308397
doi:

Substances chimiques

Antineoplastic Agents 0
Protein Kinase Inhibitors 0
EGFR protein, mouse EC 2.7.10.1
ErbB Receptors EC 2.7.10.1

Banques de données

figshare
['10.6084/m9.figshare.12408803.v1']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3157

Références

Weinstein, I. B. Addiction to oncogenes-the Achilles heal of cancer. Science 297, 63–64 (2002).
doi: 10.1126/science.1073096
Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).
doi: 10.1016/j.ccell.2018.03.025
Sun, C. & Bernards, R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem. Sci. 39, 465–474 (2014).
doi: 10.1016/j.tibs.2014.08.010
Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).
doi: 10.1056/NEJMoa1210093
Khunger, A., Khunger, M. & Velcheti, V. Dabrafenib in combination with trametinib in the treatment of patients with BRAF V600-positive advanced or metastatic non-small cell lung cancer: clinical evidence and experience. Ther. Adv. Respir. Dis. 12, 1753466618767611 (2018).
doi: 10.1177/1753466618767611
Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-Mutated colorectal cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1908075 (2019).
Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-Mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).
doi: 10.1158/2159-8290.CD-17-1226
Xue, Y. et al. An approach to suppress the evolution of resistance in BRAF(V600E)-mutant cancer. Nat. Med. 23, 929–937 (2017).
doi: 10.1038/nm.4369
Caumanns, J. J. et al. Low-dose triple drug combination targeting the PI3K/AKT/mTOR pathway and the MAPK pathway is an effective approach in ovarian clear cell carcinoma. Cancer Lett. 461, 102–111 (2019).
doi: 10.1016/j.canlet.2019.07.004
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).
doi: 10.1016/j.cell.2010.02.027
Peng, S.-B. et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).
doi: 10.1016/j.ccell.2015.08.002
Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).
doi: 10.1158/2159-8290.CD-13-0070
Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747–758 (2008).
doi: 10.1038/nrm2509
Russ, D. & Kishony, R. Additivity of inhibitory effects in multidrug combinations. Nat. Microbiol 3, 1339–1345 (2018).
doi: 10.1038/s41564-018-0252-1
Brant, R. et al. Clinically viable gene expression assays with potential for predicting benefit from MEK inhibitors. Clin. Cancer Res. 23, 1471–1480 (2017).
doi: 10.1158/1078-0432.CCR-16-0021
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).
doi: 10.1038/nm.4040
Eberlein, C. A. et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res. 75, 2489–2500 (2015).
doi: 10.1158/0008-5472.CAN-14-3167
Park, S. R., Davis, M., Doroshow, J. H. & Kummar, S. Safety and feasibility of targeted agent combinations in solid tumours. Nat. Rev. Clin. Oncol. 10, 154–168 (2013).
doi: 10.1038/nrclinonc.2012.245
Mendoza, M. C., Er, E. E. & Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328 (2011).
doi: 10.1016/j.tibs.2011.03.006
Fey, D., Croucher, D., Kolch, W. & Kholodenko, B. Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front. Physiol. 3, 355 (2012).
doi: 10.3389/fphys.2012.00355
Lake, D., Correa, S. A. L. & Muller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 73, 4397–4413 (2016).
doi: 10.1007/s00018-016-2297-8
Martinez-Marti, A. et al. Dual MET and ERBB inhibition overcomes intratumor plasticity in osimertinib-resistant-advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 28, 2451–2457 (2017).
doi: 10.1093/annonc/mdx396
Hayakawa, H. et al. Lower gefitinib dose led to earlier resistance acquisition before emergence of T790M mutation in epidermal growth factor receptor-mutated lung cancer model. Cancer Sci. 104, 1440–1446 (2013).
doi: 10.1111/cas.12284
Tricker, E. M. et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov. 5, 960–971 (2015).
doi: 10.1158/2159-8290.CD-15-0063
Ichihara, E. et al. Clinical significance of repeat rebiopsy in detecting the EGFR T790M secondary mutation in patients with non-small cell lung cancer. Oncotarget 9, 29525–29531 (2018).
doi: 10.18632/oncotarget.25705
Vendrell, J. A. et al. Ultra-sensitive EGFR (T790M) detection as an independent prognostic marker for lung cancer patients harboring EGFR (del19) mutations and treated with first-generation TKIs. Clin. Cancer Res. 25, 4280–4289 (2019).
doi: 10.1158/1078-0432.CCR-18-2683
Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 4, 423–436 (2004).
doi: 10.1038/nrc1369
Scharovsky, O. G., Mainetti, L. E. & Rozados, V. R. Metronomic chemotherapy: changing the paradigm that more is better. Curr. Oncol. 16, 7–15 (2009).
doi: 10.3747/co.v16i2.420
Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).
doi: 10.4103/0976-0105.177703
Dijkstra, K. K. et al. Generation of rumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).
doi: 10.1016/j.cell.2018.07.009
Ambrogio, C. et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat. Med. 22, 270–277 (2016).
doi: 10.1038/nm.4041

Auteurs

João M Fernandes Neto (JM)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Ernest Nadal (E)

Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain.

Evert Bosdriesz (E)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
Department of Computer Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.

Salo N Ooft (SN)

Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.

Lourdes Farre (L)

Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain.
Institute Gonçalo Moniz, Fundaçao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil.

Chelsea McLean (C)

Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.

Sjoerd Klarenbeek (S)

Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.

Anouk Jurgens (A)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Hannes Hagen (H)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Liqin Wang (L)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Enriqueta Felip (E)

Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Autonomous University of Barcelona (UAB), Barcelona, Spain.

Alex Martinez-Marti (A)

Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Autonomous University of Barcelona (UAB), Barcelona, Spain.

August Vidal (A)

Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain.

Emile Voest (E)

Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.

Lodewyk F A Wessels (LFA)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Olaf van Tellingen (O)

Division of Clinical Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.

Alberto Villanueva (A)

Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain.
Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, Spain.

René Bernards (R)

Division of Molecular Carcinogenesis and Oncode Institute. The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. r.bernards@nki.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH