Expansion, Exploitation and Extinction: Niche Construction in Ephemeral Landscapes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 06 2020
22 06 2020
Historique:
received:
10
12
2019
accepted:
26
05
2020
entrez:
24
6
2020
pubmed:
24
6
2020
medline:
24
6
2020
Statut:
epublish
Résumé
We aim to understand general consequences of niche construction on metapopulation dynamics in ephemeral landscapes. To this effect, a contact process-like stochastic spatial model is introduced where local populations colonize and go extinct on a dynamic landscape of habitable and destroyed patches. In contrast to previous models, where the extinction threshold is a consequence of available niche rendered by global rates of patch destruction/renewal, here we investigate how the metapopulation persists when they are the sole generators of their own niche. Niche construction is full-filled by localized populations through the transformation of destroyed patches in their neighborhood to viable habitat for future colonization. With this theoretical framework we are able to address the dual nature of niche construction by investigating the ephemerality of the landscape (destruction rate) and the continuum of population level strategies, where construction comes at a cost to colonization. Using mean field theory and Monte Carlo simulations of the model, we are able to quantify optimal population level strategies in a wide range of ephemeral landscapes. Interestingly, we observe qualitative differences at the extinction threshold between analytic and numeric results. Investigating this discrepancy further, we find that increasing niche construction neighborhood in the spatial model leads to two interrelated effects i) an increased rate in range expansion ii) a loss in resiliency and return of the discontinuous transition at the extinction threshold. Furthermore, in the discontinuous regime of the model, spatial clustering prior to a critical transition disappears. This is a significant finding as spatial clustering has been considered to be an early warning signal before ecosystems reach their 'tipping point'. In addition to maintaining stability, we find local niche construction strategies have an advantage when in scramble competition with an exploiter strategy because of their ability to monopolize the constructed niche due to spatial adjacency. As the niche construction neighborhood expands this advantage disappears and the exploiter strategy out-competes the niche constructor. In some cases the exploiter pushes the niche constructor to extinction, thus a tragedy of the commons ensues leading to 'ecological suicide' and a collapse of the niche.
Identifiants
pubmed: 32572081
doi: 10.1038/s41598-020-66888-9
pii: 10.1038/s41598-020-66888-9
pmc: PMC7308365
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10067Références
Lewontin, R. C. The triple helix: Gene, organism, and environment (Harvard University Press, 2001).
Legrand, D. et al. Eco-evolutionary dynamics in fragmented landscapes. Ecography 40, 9–25 (2017).
doi: 10.1111/ecog.02537
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the neglected process in evolution. 37 (Princeton university press, 2003).
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem management, 130–147 (Springer, 1994).
Whittaker, R. H., Levin, S. A. & Root, R. B. Niche, habitat, and ecotope. The Am. Nat. 107, 321–338 (1973).
doi: 10.1086/282837
Byers, J. E. et al. Using ecosystem engineers to restore ecological systems. Trends ecology & evolution 21, 493–500 (2006).
doi: 10.1016/j.tree.2006.06.002
Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
doi: 10.1007/s100219900002
de Visser, S., Thébault, E. & de Ruiter, P. C. Ecosystem engineers, keystone species. In Ecological Systems, 59–68 (Springer, 2013).
Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. letters 7, 584–600 (2004).
doi: 10.1111/j.1461-0248.2004.00606.x
Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Transactions Royal Soc. B: Biol. Sci. 364, 1629–1640 (2009).
doi: 10.1098/rstb.2009.0012
Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. 104, 1877–1882 (2007).
pubmed: 17267602
doi: 10.1073/pnas.0610575104
Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).
pubmed: 21127257
doi: 10.1126/science.1196526
Kato, S., Haruta, S., Cui, Z. J., Ishii, M. & Igarashi, Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71, 7099–7106 (2005).
pubmed: 16269746
pmcid: 1287685
doi: 10.1128/AEM.71.11.7099-7106.2005
McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. opinion biotechnology 20, 623–632 (2009).
doi: 10.1016/j.copbio.2009.10.001
Cronin, J. T. & Reeve, J. D. Host–parasitoid spatial ecology: a plea for a landscape-level synthesis. Proc. Royal Soc. Lond. B: Biol. Sci. 272, 2225–2235 (2005).
doi: 10.1098/rspb.2005.3286
Krakauer, D. C., Page, K. M. & Erwin, D. H. Diversity, dilemmas, and monopolies of niche construction. The Am. Nat. 173, 26–40 (2008).
doi: 10.1086/593707
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. The Am. Nat. 147, 641–648 (1996).
doi: 10.1086/285870
Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl. Acad. Sci. 96, 10242–10247 (1999).
pubmed: 10468593
doi: 10.1073/pnas.96.18.10242
Weismann, A. Das Keimplasma: eine theorie der Vererbung (Fischer, 1892).
Buss, L. W. The evolution of individuality (Princeton University Press, 2014).
Robinson, G. E. Regulation of division of labor in insect societies. Annu. review entomology 37, 637–665 (1992).
doi: 10.1146/annurev.en.37.010192.003225
Craig Maclean, R. & Brandon, C. Stable public goods cooperation and dynamic social interactions in yeast. J. evolutionary biology 21, 1836–1843 (2008).
doi: 10.1111/j.1420-9101.2008.01579.x
Neilands, J. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 26723–26726 (1995).
pubmed: 7592901
doi: 10.1074/jbc.270.45.26723
McAvoy, A., Fraiman, N., Hauert, C., Wakeley, J. & Nowak, M. A. Public goods games in populations with fluctuating size. arXiv preprint arXiv:1709.03630 (2017).
Gore, J., Youk, H. & Van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).
pubmed: 19349960
pmcid: 2888597
doi: 10.1038/nature07921
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).
pubmed: 15329720
doi: 10.1038/nature02744
Hardin, G. The tragedy of the commons. J. Nat. Resour. Policy Res. 1, 243–253 (2009).
doi: 10.1080/19390450903037302
Levin, S. A. & Paine, R. T. Disturbance, patch formation, and community structure. Proc. Natl. Acad. Sci. 71, 2744–2747 (1974).
pubmed: 4527752
doi: 10.1073/pnas.71.7.2744
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. & Evol. 18, 119–125 (2003).
doi: 10.1016/S0169-5347(02)00045-9
Xu, C., Van Nes, E. H., Holmgren, M., Kéfi, S. & Scheffer, M. Local facilitation may cause tipping points on a landscape level preceded by early-warning indicators. The Am. Nat. 186, E81–E90 (2015).
pubmed: 26655579
doi: 10.1086/682674
Gyllenberg, M. & Parvinen, K. Necessary and sufficient conditions for evolutionary suicide. Bull. mathematical biology 63, 981–993 (2001).
doi: 10.1006/bulm.2001.0253
Parvinen, K. Evolutionary suicide. Acta biotheoretica 53, 241–264 (2005).
pubmed: 16329010
doi: 10.1007/s10441-005-2531-5
Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15, 237–240 (1969).
Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. Elife 2, e01169 (2013).
pubmed: 24347543
pmcid: 3865686
doi: 10.7554/eLife.01169
Harris, T. E. Contact interactions on a lattice. The Annals Probab. 969–988 (1974).
Liggett, T. M. Interacting particle systems, vol. 276 (Springer Science & Business Media, 2012).
Marro, J. & Dickman, R. Nonequilibrium phase transitions in lattice models (Cambridge University Press, 2005).
Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part i. Nature 280, 361 (1979).
pubmed: 460412
doi: 10.1038/280361a0
Keymer, J. E., Marquet, P. A., Velasco-Hernández, J. X. & Levin, S. A. Extinction thresholds and metapopulation persistence in dynamic landscapes. The Am. Nat. 156, 478–494 (2000).
pubmed: 29587508
doi: 10.1086/303407
Bascompte, J. & Solé, R. V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Animal Ecol. 465–473 (1996).
Rietkerk, M., Dekker, S. C., De Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
pubmed: 15448261
doi: 10.1126/science.1101867
Fisher, M. E. & Barber, M. N. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28, 1516 (1972).
doi: 10.1103/PhysRevLett.28.1516
Forman, R. Land Mosaics: The Ecology of Landscapes and Regions 1995 (Springer, 2014).
Whittaker, R. & Levin, S. The role of mosaic phenomena in natural communities. Theor. population biology 12, 117–139 (1977).
doi: 10.1016/0040-5809(77)90039-9
Levin, S. A. Community equilibria and stability, and an extension of the competitive exclusion principle. The Am. Nat. 104, 413–423 (1970).
doi: 10.1086/282676
Neuhauser, C. Ergodic theorems for the multitype contact process. Probab. Theory Relat. Fields 91, 467–506 (1992).
doi: 10.1007/BF01192067
Horn, H. S. & MacArthur, R. H. Competition among fugitive species in a harlequin environment. Ecology 53, 749–752 (1972).
doi: 10.2307/1934797
Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
pubmed: 17840770
doi: 10.1126/science.199.4335.1302
von Bronk, B., Schaffer, S. A., Götz, A. & Opitz, M. Effects of stochasticity and division of labor in toxin production on two-strain bacterial competition in escherichia coli. PLoS biology 15, e2001457 (2017).
doi: 10.1371/journal.pbio.2001457
Wetherington, M. T. & Keymer, J. E. What does not kill you makes you stronger. Trends microbiology 25, 605–607 (2017).
doi: 10.1016/j.tim.2017.06.005
Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. Elife 2, e00960 (2013).
pubmed: 24220506
pmcid: 3823188
doi: 10.7554/eLife.00960
Köhler, T., Buckling, A. & Van Delden, C. Cooperation and virulence of clinical pseudomonas aeruginosa populations. Proc. Natl. Acad. Sci. 106, 6339–6344 (2009).
pubmed: 19332772
doi: 10.1073/pnas.0811741106
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).
pubmed: 18004383
doi: 10.1038/nature06279
Jin, Z. et al. Conditional privatization of a public siderophore enables pseudomonas aeruginosa to resist cheater invasion. Nat. communications 9, 1–11 (2018).
doi: 10.1038/s41467-017-02088-w
Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl. Acad. Sci. 104, 19926–19930 (2007).
pubmed: 18056799
doi: 10.1073/pnas.0710150104
Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. population biology 46, 363–394 (1994).
doi: 10.1006/tpbi.1994.1032
Doebeli, M. & Hauert, C. Models of cooperation based on the prisoner’s dilemma and the snowdrift game. Ecol. letters 8, 748–766 (2005).
doi: 10.1111/j.1461-0248.2005.00773.x
Lion, S. & Van Baalen, M. Self-structuring in spatial evolutionary ecology. Ecol. letters 11, 277–295 (2008).
doi: 10.1111/j.1461-0248.2007.01132.x
Estrela, S. et al. Environmentally mediated social dilemmas. Trends ecology & evolution (2018).
Hauert, C., Saade, C. & McAvoy, A. Asymmetric evolutionary games with environmental feedback. J. theoretical biology 462, 347–360 (2019).
doi: 10.1016/j.jtbi.2018.11.019
Smith, J. M. & Szathmary, E. The major transitions in evolution (Oxford University Press, 1997).
Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974).
doi: 10.1016/0303-2647(74)90031-8
Durrett, R. & Levin, S. Spatial aspects of interspecific competition. Theor. population biology 53, 30–43 (1998).
doi: 10.1006/tpbi.1997.1338