A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 06 2020
Historique:
received: 05 02 2020
accepted: 28 05 2020
entrez: 24 6 2020
pubmed: 24 6 2020
medline: 24 6 2020
Statut: epublish

Résumé

We present a radio-frequency-activated switching system that can automatically detune a metamaterial resonator to enhance magnetic resonance imaging (MRI) performance. Local sensitivity-enhancing metamaterials typically consist of resonant components, which means that the transmitted radio frequency field is spatially inhomogeneous. The switching system shows for the first time that a metamaterial resonator can be detuned during transmission and tuned during reception using a digital circuit. This allows a resonating system to maintain homogeneous transmit field while maintaining an increased receive sensitivity. As a result, sensitivity can be enhanced without changing the system-provided specific absorption rate (SAR) models. The developed digital circuit consists of inductors sensitive to the transmit radio-frequency pulses, along with diodes acting as switches to control the resonance frequency of the resonator. We first test the automatic resonator detuning on-the-bench, and subsequently evaluate it in a 1.5 T MRI scanner using tissue-mimicking phantoms. The scan results demonstrate that the switching mechanism automatically detunes the resonator in transmit mode, while retaining its sensitivity-enhancing properties (tuned to the Larmor frequency) in receive mode. Since it does not require any connection to the MRI console, the switching system can have broad applications and could be adapted for use with other types of MRI scanners and field-enhancing resonators.

Identifiants

pubmed: 32572087
doi: 10.1038/s41598-020-66884-z
pii: 10.1038/s41598-020-66884-z
pmc: PMC7308377
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10042

Références

Khoo, V. S. et al. Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiotherapy and Oncology 42, 1–15 (1997).
doi: 10.1016/S0167-8140(96)01866-X
Morris, P.G. Nuclear magnetic resonance imaging in medicine and biology, Clarendon Press; Oxford (UK) (1986).
Lord, S. J. et al. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. European journal of Cancer 43, 1905–1917 (2007).
doi: 10.1016/j.ejca.2007.06.007
Wolfsberger, S. et al. Applications of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. Neurosurgery. 100, 278–86 (2004).
doi: 10.3171/jns.2004.100.2.0278
Kraff, O., Fischer, A., Nagel, A. M., Monninghoff, C. & Ladd, M. E. MRI at 7 tesla and above: Demonstrated and potential capabilities. Magnetic Resonance Imaging 41, 13–33 (2015).
doi: 10.1002/jmri.24573
De Zwart, J. A., Ledden, P. J., Kellman, P., Van Gelderen, P. & Duyn, J. H. Design of a SENSE-optimized high‐sensitivity MRI receive coil for brain imaging. Magnetic Resonance in Medicine 47, 1218–1227 (2002).
doi: 10.1002/mrm.10169
Dubois, M. et al. Enhancing surface coil sensitive volume with hybridized electric dipoles at 17.2 T. Magnetic Resonance. 307, 106567 (2019).
doi: 10.1016/j.jmr.2019.106567
Arakawa, M. & Crooks, L. E. MRI transmit coil disable switching via RF in/out cables, Patent publication no US4763076A (1988).
Yan, X., Gore, J. & Grissom, W. Self-decouple radiofrequency coil for magnetic resonance imaging. Nature communications 9, 3481 (2018).
doi: 10.1038/s41467-018-05585-8
Biber, S. & Huber, K. Automatic detuning of non-connected transceiver coils for MRI, Patent number: US10114091B2, (2018).
Theysohn, J. M. et al. The human hippocampus at 7 T—In vivo MRI. Hippocampus. 19, 1–7 (2009).
doi: 10.1002/hipo.20487
Truong, T. K., Chakeres, D. W., Beversdorf, D. Q., Scharre, D. W. & Schmalbrock, P. Effects of static and radiofrequency magnetic field inhomogeneity in ultra-high field magnetic resonance imaging. Magnetic Resonance Imaging 24, 103 (2006).
doi: 10.1016/j.mri.2005.09.013
Stafford, R. J. TU‐B‐I‐617‐01: High Field MRI — Technology, Applications, Safety, and Limitations. Medical Physics 32, 2077 (2005).
doi: 10.1118/1.1999700
Alkurt, F. O. et al. Enhancement of image quality by using metamaterial inspired energy harvester. Physics Letters A 384, 126041 (2020).
doi: 10.1016/j.physleta.2019.126041
Alkurt, F. O. et al. Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz. Optical Engineering. 57, 113102 (2018).
doi: 10.1117/1.OE.57.11.113102
Altıntaş, O., Aksoy, M. & Ünala, E. Design of a metamaterial inspired omega-shaped resonator based sensor for industrial implementations. Physica E: Low-dimensional Systems and Nanostructures 116, 113734 (2020).
doi: 10.1016/j.physe.2019.113734
Altintaş, O., Aksoy, M., Ünal, E. & Karaaslan, M. Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Journal of The Electrochemical Society 166, B482–B488 (2019).
doi: 10.1149/2.1101906jes
Akgol, O. et al. Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik. 161, 12–19 (2018).
doi: 10.1016/j.ijleo.2018.02.028
Lopez, M. A. et al. Nonlinear split-ring metamaterial slabs for magnetic resonance imaging. Applied Physics Letters 98, 133508 (2011).
doi: 10.1063/1.3574916
Wiltshire, M. C. K., Hajnal, J. V., Pendry, J. B., Edwards, D. J. & Stevens, C. J. Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Optics Express 11, 709–715 (2003).
doi: 10.1364/OE.11.000709
Radu, X., Garray, D. & Craeye, C. Toward a wire medium endoscope for MRI imaging. Metamaterials 3, 90–99 (2009).
doi: 10.1016/j.metmat.2009.07.005
Khennouche, M. S., Gadot, F., Beller, B. & De Lastrac, A. Different configurations of metamaterials coupled with an RF coil for MRI applications. Applied Physics A 109, 1059–63 (2012).
doi: 10.1007/s00339-012-7408-2
Slobozhanyuk, A. P. et al. Enhancement of Magnetic Resonance Imaging with Metasurfaces. Advanced Materials. 28, 1832–1838 (2016).
doi: 10.1002/adma.201504270
Saha, S.C. et al. Evaluation of metasurface resonator for in-vivo imaging at 1.5T, In proceeding of ISMRM 2017, HI, USA.
Cheng, H. & Huang, F. Magnetic resonance imaging image intensity correction with extrapolation and adaptive smoothing. Magnetic Resonance in Medicine 55, 959–966 (2006).
doi: 10.1002/mrm.20841
Zhao, X., Duan, G., Wu, K. E., Anderson, S. W. & Zhang, X. Intelligent metamaterials based on nonlinearity for Magnetic resonance imaging. Advanced Materials. 31, 1905461 (2019).
doi: 10.1002/adma.201905461
Garwood, M. & Ugurbil, K. RF Pulse Methods for Use with Surface Coils: Frequency-modulated Pulses and Parallel Transmission. J. of Magnetic Resonance 291, 84–93 (2018).
doi: 10.1016/j.jmr.2018.01.012
ASTM F2052-15, Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment, ASTM International, (2015).
Kato, H. et al. Composition of MRI phantom equivalent to human tissues. Medical Physics. 32, 3199–3208 (2005).
doi: 10.1118/1.2047807
Sanchez-Heredia, J., Hansen, E., Laustsen, C., Zhurbenko, V. & Ardenjaer-Larsen, J. Low-noise active decoupling and its application to 13C cryogenic RF coils at 3T. Tomography 3, 60–66 (2017).
doi: 10.18383/j.tom.2016.00280
Lee, R. F., Giaquinto, R. O. & Hardy, C. J. Coupling and decoupling theory and its applications to the MRI phased array. Journal of Magnetic Resonance in Medicine 48, 203–213 (2002).
doi: 10.1002/mrm.10186
Vergara Gomes, T. S. et al. Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging. NMR in Biomedicine 32, e4079 (2019).
doi: 10.1002/nbm.4079

Auteurs

Shimul Saha (S)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK. shimul.saha@metamaterial.com.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada. shimul.saha@metamaterial.com.

Roberto Pricci (R)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada.

Maria Koutsoupidou (M)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Department of Engineering, King's College London, London, WC2R 2LS, UK.

Helena Cano-Garcia (H)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada.

Ditjon Katana (D)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.

Srinivas Rana (S)

Department of Engineering, King's College London, London, WC2R 2LS, UK.

Panagiotis Kosmas (P)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada.
Department of Engineering, King's College London, London, WC2R 2LS, UK.

George Palikaras (G)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada.

Andrew Webb (A)

C.J. Gorter High Field Magnetic Resonance Center, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.

Efthymios Kallos (E)

MediWiSe| Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise Innovation Centre, 42 New Road, E1 2AX, London, UK.
Metamaterial Inc, 1 Research Drive, Dartmouth, Nova Scotia, B2Y 4M9, Canada.

Classifications MeSH