CD4
Journal
Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
17
12
2019
accepted:
03
06
2020
revised:
30
04
2020
pubmed:
24
6
2020
medline:
30
11
2021
entrez:
24
6
2020
Statut:
ppublish
Résumé
Studies in mice and humans have shown that CD8
Identifiants
pubmed: 32572129
doi: 10.1038/s41385-020-0315-5
pii: S1933-0219(22)00140-4
doi:
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
402-410Références
Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).
pubmed: 11264538
doi: 10.1126/science.1058867
Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).
pubmed: 30726153
pmcid: 7175802
doi: 10.1146/annurev-immunol-042617-053214
Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).
pubmed: 26688350
doi: 10.1038/nri.2015.3
Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, 9673 (2019).
doi: 10.1126/sciimmunol.aas9673
Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8(+) T cells. Nat. Immunol. 14, 509–513 (2013).
pubmed: 23542740
pmcid: 3631432
doi: 10.1038/ni.2568
Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).
pubmed: 29311695
doi: 10.1038/s41590-017-0027-5
Beura, L. K. et al. Intravital mucosal imaging of CD8(+) resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).
pubmed: 29311694
pmcid: 5896323
doi: 10.1038/s41590-017-0029-3
Bartolome-Casado, R., et al. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216, 2412–2426 (2019).
pubmed: 31337737
pmcid: 6781004
doi: 10.1084/jem.20190414
Snyder, M. E., et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, 5581 (2019).
doi: 10.1126/sciimmunol.aav5581
Mackay, L. K. et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).
pubmed: 24162776
doi: 10.1038/ni.2744
Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).
pubmed: 15142524
doi: 10.1016/S1074-7613(04)00103-7
Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8(+) T cells. Nat. Immunol. 14, 1285 (2013).
pubmed: 24162775
pmcid: 3844557
doi: 10.1038/ni.2745
Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372, 190–193 (1994).
pubmed: 7969453
doi: 10.1038/372190a0
Schon, M. P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).
pubmed: 10352281
Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).
pubmed: 23260195
doi: 10.1016/j.immuni.2012.09.020
Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).
pubmed: 22058417
doi: 10.4049/jimmunol.1102243
Hondowicz, B. D. et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016).
pubmed: 26750312
doi: 10.1016/j.immuni.2015.11.004
Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra239 (2015).
doi: 10.1126/scitranslmed.3010302
Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).
pubmed: 26216123
pmcid: 4548053
doi: 10.1084/jem.20142101
Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).
pubmed: 25170048
pmcid: 4254703
doi: 10.1126/science.1257530
Becattini, S. et al. T cell immunity. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015).
pubmed: 25477212
doi: 10.1126/science.1260668
Brucklacher-Waldert, V., Carr, E. J., Linterman, M. A. & Veldhoen, M. Cellular plasticity of CD4+ T cells in the intestine. Front. Immunol. 5, 488 (2014).
pubmed: 25339956
pmcid: 4188036
doi: 10.3389/fimmu.2014.00488
Carbone, F. R. & Gebhardt, T. Should I stay or should I go-reconciling clashing perspectives on CD4(+) tissue-resident memory T cells. Sci. Immunol. 4, 5595 (2019).
doi: 10.1126/sciimmunol.aax5595
Zhang, N. & Bevan, M. J. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).
pubmed: 24076049
pmcid: 3805703
doi: 10.1016/j.immuni.2013.08.019
Oja, A. E. et al. Trigger-happy resident memory CD4(+) T cells inhabit the human lungs. Mucosal Immunol. 11, 654–667 (2018).
pubmed: 29139478
doi: 10.1038/mi.2017.94
Bishu, S., et al. Citrobacter rodentium induces tissue-resident memory CD4(+) T cells. Infect. Immun. 87, e00295-19 (2019).
Romagnoli, P. A. et al. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol. 10, 520–530 (2017).
pubmed: 27461178
doi: 10.1038/mi.2016.66
Zundler, S., et al. Hobit- and Blimp-1-driven CD4(+) tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 20, 288–300 (2019).
pubmed: 30692620
doi: 10.1038/s41590-018-0298-5
Kleinschek, M. A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206, 525–534 (2009).
pubmed: 19273624
pmcid: 2699125
doi: 10.1084/jem.20081712
Lamb, C. A. et al. alphaEbeta7 integrin identifies subsets of pro-inflammatory colonic CD4+ T lymphocytes in ulcerative colitis. J. Crohns Colitis 11, 610–620 (2017).
pubmed: 28453768
doi: 10.1093/ecco-jcc/jjx097
Risnes, L. F. et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J. Clin. Invest. 128, 2642–2650 (2018).
pubmed: 29757191
pmcid: 5983310
doi: 10.1172/JCI98819
Christophersen, A. et al. Distinct phenotype of CD4(+) T cells driving celiac disease identified in multiple autoimmune conditions. Nat. Med. 25, 734–737 (2019).
pubmed: 30911136
pmcid: 6647859
doi: 10.1038/s41591-019-0403-9
Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).
pubmed: 28930685
pmcid: 5646692
doi: 10.1016/j.celrep.2017.08.078
Horneland, R. et al. Pancreas transplantation with enteroanastomosis to native duodenum poses technical challenges–but offers improved endoscopic access for scheduled biopsies and therapeutic interventions. Am. J. Transplant. 15, 242–250 (2015).
pubmed: 25394773
doi: 10.1111/ajt.12953
Beura, L. K., et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 216, 1214–1229 (2019).
pubmed: 30923043
pmcid: 6504216
doi: 10.1084/jem.20181365
Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).
pubmed: 11479623
doi: 10.1038/90950
Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).
pubmed: 21841802
doi: 10.1038/nature10339
Collins, N. et al. Skin CD4(+) memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016).
pubmed: 27160938
pmcid: 4866325
doi: 10.1038/ncomms11514
Klicznik, M. M., et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4, 8995 (2019).
doi: 10.1126/sciimmunol.aav8995
Cauley, L. S. et al. Cutting edge: virus-specific CD4+ memory T cells in nonlymphoid tissues express a highly activated phenotype. J. Immunol. 169, 6655–6658 (2002).
pubmed: 12471092
doi: 10.4049/jimmunol.169.12.6655
Zuber, J., et al. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci. Immunol. 1, 3732 (2016).
doi: 10.1126/sciimmunol.aah3732
Eguiluz-Gracia, I. et al. Long-term persistence of human donor alveolar macrophages in lung transplant recipients. Thorax 71, 1006–1011 (2016).
pubmed: 27329043
doi: 10.1136/thoraxjnl-2016-208292
Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).
pubmed: 22923434
pmcid: 3784339
doi: 10.1126/science.1220961
Hegazy, A. N. et al. Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337 e1316 (2017).
pubmed: 28782508
doi: 10.1053/j.gastro.2017.07.047
Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).
pubmed: 18400188
pmcid: 3424508
doi: 10.1016/j.immuni.2008.03.004
Martinez-Lopez, M. et al. Microbiota sensing by mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 50, 446–461 e449 (2019).
pubmed: 30709742
pmcid: 6382412
doi: 10.1016/j.immuni.2018.12.020
Omenetti, S., et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51, 77–89 (2019).
pubmed: 31229354
pmcid: 6642154
doi: 10.1016/j.immuni.2019.05.004
Landsverk, O. J. et al. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214, 309–317 (2017).
pubmed: 28104812
pmcid: 5294861
doi: 10.1084/jem.20161590
Ruiz, P. et al. International grading scheme for acute cellular rejection in small-bowel transplantation: single-center experience. Transplant. Proc. 42, 47–53 (2010).
pubmed: 20172279
doi: 10.1016/j.transproceed.2009.12.026
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5