Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 Jun 2020
23 Jun 2020
Historique:
received:
05
03
2020
accepted:
20
05
2020
entrez:
25
6
2020
pubmed:
25
6
2020
medline:
25
6
2020
Statut:
epublish
Résumé
We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10
Identifiants
pubmed: 32576865
doi: 10.1038/s41598-020-66701-7
pii: 10.1038/s41598-020-66701-7
pmc: PMC7311485
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
10151Références
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303+274 (2004).
doi: 10.1002/adem.200300567
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
doi: 10.1016/j.msea.2003.10.257
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
doi: 10.1016/j.actamat.2016.08.081
Tsai, M. H. & Yeh, J. W. High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107–123 (2014).
doi: 10.1080/21663831.2014.912690
Schuh, B. et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015).
doi: 10.1016/j.actamat.2015.06.025
Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G. & Lu, Z. P. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526–529 (2013).
doi: 10.1016/j.scriptamat.2012.12.002
Gorsse, S., Hutchinson, C., Gouné, M. & Banerjee, R. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18, 584–610 (2017).
pubmed: 28970868
pmcid: 5613834
doi: 10.1080/14686996.2017.1361305
Brif, Y., Thomas, M. & Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015).
doi: 10.1016/j.scriptamat.2014.11.037
Melia, M. A. et al. Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy. Addit. Manuf. 29, 100833 (2019).
Toda-Caraballo, I. & Rivera-Díaz-Del-Castillo, P. E. J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14–23 (2015).
doi: 10.1016/j.actamat.2014.11.014
Hsu, C. Y., Sheu, T. S., Yeh, J. W. & Chen, S. K. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 268, 653–659 (2010).
doi: 10.1016/j.wear.2009.10.013
Wu, J. M. et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006).
doi: 10.1016/j.wear.2005.12.008
Huang, C., Zhang, Y., Vilar, R. & Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater. Des. 41, 338–343 (2012).
doi: 10.1016/j.matdes.2012.04.049
Chen, M. et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310–3320 (2018).
doi: 10.1557/jmr.2018.279
Cheng, H. et al. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures. J. Alloys Compd. 817, 153305 (2020).
doi: 10.1016/j.jallcom.2019.153305
Lai, C. H., Cheng, K. H., Lin, S. J. & Yeh, J. W. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coatings Technol. 202, 3732–3738 (2008).
doi: 10.1016/j.surfcoat.2008.01.014
Huang, C. et al. Microstructure and dry sliding wear behavior of laser clad AlCrNiSiTi multi-principal element alloy coatings. Rare Met. 36, 562–568 (2017).
doi: 10.1007/s12598-017-0912-y
Joseph, J. et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429, 32–44 (2019).
doi: 10.1016/j.wear.2019.03.002
Huang, J. C. Evaluation of tribological behavior of Al-Co-Cr-Fe-Ni high entropy alloy using molecular dynamics simulation. Scanning 34, 325–331 (2012).
pubmed: 22549875
doi: 10.1002/sca.21006
Poulia, A., Georgatis, E., Lekatou, A. & Karantzalis, A. E. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Met. Hard Mater. 57, 50–63 (2016).
doi: 10.1016/j.ijrmhm.2016.02.006
Mathiou, C., Poulia, A., Georgatis, E. & Karantzalis, A. E. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 210, 126–135 (2018).
doi: 10.1016/j.matchemphys.2017.08.036
Miao, J. et al. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum 149, 324–330 (2018).
doi: 10.1016/j.vacuum.2018.01.012
Ayyagari, A. et al. Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments. Mater. Chem. Phys. 210, 162–169 (2018).
doi: 10.1016/j.matchemphys.2017.07.031
Liu, Y. et al. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 3312–3321 (2016).
doi: 10.1007/s11661-016-3396-8
Wang, Y. et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210, 233–239 (2018).
doi: 10.1016/j.matchemphys.2017.05.029
Chandross, M. & Argibay, N. Ultimate Strength of Metals. Phys. Rev. Lett. 124, 125501 (2020).
pubmed: 32281861
doi: 10.1103/PhysRevLett.124.125501
Curry, J. F. et al. Achieving Ultralow Wear with Stable Nanocrystalline Metals. Adv. Mater. 30, 1802026 (2018).
doi: 10.1002/adma.201802026
Chandross, M. et al. Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures. Scr. Mater. 143, 54–58 (2018).
doi: 10.1016/j.scriptamat.2017.09.006
Argibay, N., Chandross, M., Cheng, S. & Michael, J. R. Linking microstructural evolution and macro-scale friction behavior in metals. J. Mater. Sci. 52, 2780–2799 (2017).
doi: 10.1007/s10853-016-0569-1
Bowden, F. P. & Tabor, D. Mechanism of Metallic Friction. Nature 150, 197–199 (1942).
doi: 10.1038/150197a0
Shakhvorostov, D. et al. Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear 263, 1259–1265 (2007).
doi: 10.1016/j.wear.2007.01.127
Prasad, S. V., Battaile, C. C. & Kotula, P. G. Friction transitions in nanocrystalline nickel. Scr. Mater. 64, 729–732 (2011).
doi: 10.1016/j.scriptamat.2010.12.027
Argibay, N., Furnish, T. A., Boyce, B. L., Clark, B. G. & Chandross, M. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior. Scr. Mater. 123, 26–29 (2016).
doi: 10.1016/j.scriptamat.2016.05.009
Shakhvorostov, D., Pöhlmann, K. & Scherge, M. Structure and mechanical properties of tribologically induced nanolayers. Wear 260, 433–437 (2006).
doi: 10.1016/j.wear.2005.02.086
Greiner, C., Liu, Z., Strassberger, L. & Gumbsch, P. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading. ACS Appl. Mater. Interfaces 8, 15809–15819 (2016).
pubmed: 27246396
doi: 10.1021/acsami.6b04035
Greiner, C., Gagel, J. & Gumbsch, P. Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations. Adv. Mater. 31, 1806705 (2019).
doi: 10.1002/adma.201806705
Greiner, C., Liu, Z., Schneider, R., Pastewka, L. & Gumbsch, P. The origin of surface microstructure evolution in sliding friction. Scr. Mater. 153, 63–67 (2018).
doi: 10.1016/j.scriptamat.2018.04.048
Johnson, K. L. Contact Mechanics. (Cambridge University Press (1985).
Johnson, K. L. Contact mechanics and the wear of metals. Wear 190, 162–170 (1995).
doi: 10.1016/0043-1648(95)06665-9
Archard, J. F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 24, 981–988 (1953).
doi: 10.1063/1.1721448
Archard, J. F. & Hirst, W. The Wear of Metals under Unlubricated Conditions. Proc. R. Soc. London A Math. Phys. Eng. Sci. 236, 397–410 (1956).
Bowden, F. P., Moore, A. J. W. & Tabor, D. The Ploughing and Adhesion of Sliding Metals. J. Appl. Phys. 14, 80–91 (1943).
doi: 10.1063/1.1714954
Korres, S., Feser, T. & Dienwiebel, M. A new approach to link the friction coefficient with topography measurements during plowing. Wear 303, 202–210 (2013).
doi: 10.1016/j.wear.2013.03.010
Pande, C. S. & Cooper, K. P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689–706 (2009).
doi: 10.1016/j.pmatsci.2009.03.008
Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).
doi: 10.1016/j.pmatsci.2005.08.003
Conrad, H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall. Mater. Trans. A 35, 2681–2695 (2004).
doi: 10.1007/s11661-004-0214-5
Wu, Z., Bei, H., Otto, F., Pharr, G. M. & George, E. P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014).
doi: 10.1016/j.intermet.2013.10.024
Holm, E. A., Miodownik, M. A. & Rollett, A. D. On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater. 51, 2701–2716 (2003).
doi: 10.1016/S1359-6454(03)00079-X
Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).
doi: 10.1016/0001-6160(65)90200-2
Lu, P. et al. On the thermal stability and grain boundary segregation in nanocrystalline PtAu alloys. Materialia 6, 1–9 (2019).
doi: 10.1016/j.mtla.2019.100298
Li, J. C. M. A New Mechanism for Superplasticity. in Science & Technology of Interfaces (eds. Ankem, S., Pande, C. S., Ovid’ko, I. & Ranganathan, S.) 155–169 (Wiley (2002).
Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989).
doi: 10.1016/0079-6425(89)90001-7
Liu, Y., Asthana, R. & Rohatgi, P. A map for wear mechanisms in aluminium alloys. J. Mater. Sci. 26, 99–102 (1991).
doi: 10.1007/BF00576038
Ibrahim, I. A., Mohamed, F. A. & Lavernia, E. J. Particulate reinforced metal matrix composites — a review. J. Mater. Sci. 26, 1137–1156 (1991).
doi: 10.1007/BF00544448
Sawyer, W. G., Argibay, N., Burris, D. L. & Krick, B. A. Mechanistic Studies in Friction and Wear of Bulk Materials. Annu. Rev. Mater. Res. 44, 395–427 (2014).
doi: 10.1146/annurev-matsci-070813-113533
Zhou, Y. H. et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Addit. Manuf. 25, 204–217 (2019).
Gutierrez, M. A., Rodriguez, G. D., Bozzolo, G. & Mosca, H. O. Melting temperature of CoCrFeNiMn high-entropy alloys. Comput. Mater. Sci. 148, 69–75 (2018).
doi: 10.1016/j.commatsci.2018.02.032
Gorsse, S., Nguyen, M. H., Senkov, O. N. & Miracle, D. B. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Br. 21, 2664–2678 (2018).
doi: 10.1016/j.dib.2018.11.111
Laplanche, G. et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348–353 (2015).
doi: 10.1016/j.jallcom.2014.11.061
Vaidya, M., Pradeep, K. G., Murty, B. S., Wilde, G. & Divinski, S. V. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1–11 (2017).
doi: 10.1038/s41598-016-0028-x
Rohrer, G. S. The role of grain boundary energy in grain boundary complexion transitions. Curr. Opin. Solid State Mater. Sci. 20, 231–239 (2016).
doi: 10.1016/j.cossms.2016.03.001
Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).
doi: 10.1016/j.actamat.2019.12.030
Seah, M. P. Segregation and the Strength of Grain Boundaries. Proc. R. Soc. Lond. A. Math. Phys. Sci. 349, 535–554 (1976).
Ming, K., Li, L., Li, Z., Bi, X. & Wang, J. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys. Sci. Adv. 5, 1–8 (2019).
doi: 10.1126/sciadv.aay0639
Wei, Y., Su, C. & Anand, L. A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater. 54, 3177–3190 (2006).
doi: 10.1016/j.actamat.2006.03.007
Ashby, M. F., Abulawi, J. & Kong, H. S. Temperature Maps for Frictional Heating in Dry Sliding. Tribol. Trans. 34, 577–587 (1991).
doi: 10.1080/10402009108982074
Edington, J. W., Melton, K. N. & Cutler, C. P. Superplasticity. Prog. Mater. Sci. 21, 61–170 (1976).
doi: 10.1016/0079-6425(76)90005-0
Kustas, A. B. et al. Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS). Addit. Manuf. 21, 41–52 (2018).
Krick, B. A. & Sawyer, W. G. Space tribometers: Design for exposed experiments on orbit. Tribol. Lett. 41, 303–311 (2011).
doi: 10.1007/s11249-010-9689-y
Hinkle, A. R. et al. Low friction in BCC metals via grain boundary sliding. Phys. Rev. Mater (Submitted, In Peer Review).
Erickson, G. M. et al. Paleo-tribology: Development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions selfwear to enable functionality. Surf. Topogr. Metrol. Prop. 4 (2016).
Schmitz, T. L., Action, J. E., Ziegert, J. C. & Sawyer, W. G. The difficulty of measuring low friction: Uncertainty analysis for friction coefficient measurements. J. Tribol. Asme 127, 673–678 (2005).
doi: 10.1115/1.1843853