Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 Jun 2020
Historique:
received: 05 03 2020
accepted: 20 05 2020
entrez: 25 6 2020
pubmed: 25 6 2020
medline: 25 6 2020
Statut: epublish

Résumé

We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10

Identifiants

pubmed: 32576865
doi: 10.1038/s41598-020-66701-7
pii: 10.1038/s41598-020-66701-7
pmc: PMC7311485
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10151

Références

Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303+274 (2004).
doi: 10.1002/adem.200300567
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
doi: 10.1016/j.msea.2003.10.257
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
doi: 10.1016/j.actamat.2016.08.081
Tsai, M. H. & Yeh, J. W. High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107–123 (2014).
doi: 10.1080/21663831.2014.912690
Schuh, B. et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015).
doi: 10.1016/j.actamat.2015.06.025
Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G. & Lu, Z. P. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526–529 (2013).
doi: 10.1016/j.scriptamat.2012.12.002
Gorsse, S., Hutchinson, C., Gouné, M. & Banerjee, R. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18, 584–610 (2017).
pubmed: 28970868 pmcid: 5613834 doi: 10.1080/14686996.2017.1361305
Brif, Y., Thomas, M. & Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015).
doi: 10.1016/j.scriptamat.2014.11.037
Melia, M. A. et al. Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy. Addit. Manuf. 29, 100833 (2019).
Toda-Caraballo, I. & Rivera-Díaz-Del-Castillo, P. E. J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14–23 (2015).
doi: 10.1016/j.actamat.2014.11.014
Hsu, C. Y., Sheu, T. S., Yeh, J. W. & Chen, S. K. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 268, 653–659 (2010).
doi: 10.1016/j.wear.2009.10.013
Wu, J. M. et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006).
doi: 10.1016/j.wear.2005.12.008
Huang, C., Zhang, Y., Vilar, R. & Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater. Des. 41, 338–343 (2012).
doi: 10.1016/j.matdes.2012.04.049
Chen, M. et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310–3320 (2018).
doi: 10.1557/jmr.2018.279
Cheng, H. et al. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures. J. Alloys Compd. 817, 153305 (2020).
doi: 10.1016/j.jallcom.2019.153305
Lai, C. H., Cheng, K. H., Lin, S. J. & Yeh, J. W. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coatings Technol. 202, 3732–3738 (2008).
doi: 10.1016/j.surfcoat.2008.01.014
Huang, C. et al. Microstructure and dry sliding wear behavior of laser clad AlCrNiSiTi multi-principal element alloy coatings. Rare Met. 36, 562–568 (2017).
doi: 10.1007/s12598-017-0912-y
Joseph, J. et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429, 32–44 (2019).
doi: 10.1016/j.wear.2019.03.002
Huang, J. C. Evaluation of tribological behavior of Al-Co-Cr-Fe-Ni high entropy alloy using molecular dynamics simulation. Scanning 34, 325–331 (2012).
pubmed: 22549875 doi: 10.1002/sca.21006
Poulia, A., Georgatis, E., Lekatou, A. & Karantzalis, A. E. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Met. Hard Mater. 57, 50–63 (2016).
doi: 10.1016/j.ijrmhm.2016.02.006
Mathiou, C., Poulia, A., Georgatis, E. & Karantzalis, A. E. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 210, 126–135 (2018).
doi: 10.1016/j.matchemphys.2017.08.036
Miao, J. et al. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum 149, 324–330 (2018).
doi: 10.1016/j.vacuum.2018.01.012
Ayyagari, A. et al. Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments. Mater. Chem. Phys. 210, 162–169 (2018).
doi: 10.1016/j.matchemphys.2017.07.031
Liu, Y. et al. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 3312–3321 (2016).
doi: 10.1007/s11661-016-3396-8
Wang, Y. et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210, 233–239 (2018).
doi: 10.1016/j.matchemphys.2017.05.029
Chandross, M. & Argibay, N. Ultimate Strength of Metals. Phys. Rev. Lett. 124, 125501 (2020).
pubmed: 32281861 doi: 10.1103/PhysRevLett.124.125501
Curry, J. F. et al. Achieving Ultralow Wear with Stable Nanocrystalline Metals. Adv. Mater. 30, 1802026 (2018).
doi: 10.1002/adma.201802026
Chandross, M. et al. Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures. Scr. Mater. 143, 54–58 (2018).
doi: 10.1016/j.scriptamat.2017.09.006
Argibay, N., Chandross, M., Cheng, S. & Michael, J. R. Linking microstructural evolution and macro-scale friction behavior in metals. J. Mater. Sci. 52, 2780–2799 (2017).
doi: 10.1007/s10853-016-0569-1
Bowden, F. P. & Tabor, D. Mechanism of Metallic Friction. Nature 150, 197–199 (1942).
doi: 10.1038/150197a0
Shakhvorostov, D. et al. Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear 263, 1259–1265 (2007).
doi: 10.1016/j.wear.2007.01.127
Prasad, S. V., Battaile, C. C. & Kotula, P. G. Friction transitions in nanocrystalline nickel. Scr. Mater. 64, 729–732 (2011).
doi: 10.1016/j.scriptamat.2010.12.027
Argibay, N., Furnish, T. A., Boyce, B. L., Clark, B. G. & Chandross, M. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior. Scr. Mater. 123, 26–29 (2016).
doi: 10.1016/j.scriptamat.2016.05.009
Shakhvorostov, D., Pöhlmann, K. & Scherge, M. Structure and mechanical properties of tribologically induced nanolayers. Wear 260, 433–437 (2006).
doi: 10.1016/j.wear.2005.02.086
Greiner, C., Liu, Z., Strassberger, L. & Gumbsch, P. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading. ACS Appl. Mater. Interfaces 8, 15809–15819 (2016).
pubmed: 27246396 doi: 10.1021/acsami.6b04035
Greiner, C., Gagel, J. & Gumbsch, P. Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations. Adv. Mater. 31, 1806705 (2019).
doi: 10.1002/adma.201806705
Greiner, C., Liu, Z., Schneider, R., Pastewka, L. & Gumbsch, P. The origin of surface microstructure evolution in sliding friction. Scr. Mater. 153, 63–67 (2018).
doi: 10.1016/j.scriptamat.2018.04.048
Johnson, K. L. Contact Mechanics. (Cambridge University Press (1985).
Johnson, K. L. Contact mechanics and the wear of metals. Wear 190, 162–170 (1995).
doi: 10.1016/0043-1648(95)06665-9
Archard, J. F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 24, 981–988 (1953).
doi: 10.1063/1.1721448
Archard, J. F. & Hirst, W. The Wear of Metals under Unlubricated Conditions. Proc. R. Soc. London A Math. Phys. Eng. Sci. 236, 397–410 (1956).
Bowden, F. P., Moore, A. J. W. & Tabor, D. The Ploughing and Adhesion of Sliding Metals. J. Appl. Phys. 14, 80–91 (1943).
doi: 10.1063/1.1714954
Korres, S., Feser, T. & Dienwiebel, M. A new approach to link the friction coefficient with topography measurements during plowing. Wear 303, 202–210 (2013).
doi: 10.1016/j.wear.2013.03.010
Pande, C. S. & Cooper, K. P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689–706 (2009).
doi: 10.1016/j.pmatsci.2009.03.008
Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).
doi: 10.1016/j.pmatsci.2005.08.003
Conrad, H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall. Mater. Trans. A 35, 2681–2695 (2004).
doi: 10.1007/s11661-004-0214-5
Wu, Z., Bei, H., Otto, F., Pharr, G. M. & George, E. P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014).
doi: 10.1016/j.intermet.2013.10.024
Holm, E. A., Miodownik, M. A. & Rollett, A. D. On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater. 51, 2701–2716 (2003).
doi: 10.1016/S1359-6454(03)00079-X
Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).
doi: 10.1016/0001-6160(65)90200-2
Lu, P. et al. On the thermal stability and grain boundary segregation in nanocrystalline PtAu alloys. Materialia 6, 1–9 (2019).
doi: 10.1016/j.mtla.2019.100298
Li, J. C. M. A New Mechanism for Superplasticity. in Science & Technology of Interfaces (eds. Ankem, S., Pande, C. S., Ovid’ko, I. & Ranganathan, S.) 155–169 (Wiley (2002).
Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989).
doi: 10.1016/0079-6425(89)90001-7
Liu, Y., Asthana, R. & Rohatgi, P. A map for wear mechanisms in aluminium alloys. J. Mater. Sci. 26, 99–102 (1991).
doi: 10.1007/BF00576038
Ibrahim, I. A., Mohamed, F. A. & Lavernia, E. J. Particulate reinforced metal matrix composites — a review. J. Mater. Sci. 26, 1137–1156 (1991).
doi: 10.1007/BF00544448
Sawyer, W. G., Argibay, N., Burris, D. L. & Krick, B. A. Mechanistic Studies in Friction and Wear of Bulk Materials. Annu. Rev. Mater. Res. 44, 395–427 (2014).
doi: 10.1146/annurev-matsci-070813-113533
Zhou, Y. H. et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis. Addit. Manuf. 25, 204–217 (2019).
Gutierrez, M. A., Rodriguez, G. D., Bozzolo, G. & Mosca, H. O. Melting temperature of CoCrFeNiMn high-entropy alloys. Comput. Mater. Sci. 148, 69–75 (2018).
doi: 10.1016/j.commatsci.2018.02.032
Gorsse, S., Nguyen, M. H., Senkov, O. N. & Miracle, D. B. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Br. 21, 2664–2678 (2018).
doi: 10.1016/j.dib.2018.11.111
Laplanche, G. et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348–353 (2015).
doi: 10.1016/j.jallcom.2014.11.061
Vaidya, M., Pradeep, K. G., Murty, B. S., Wilde, G. & Divinski, S. V. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1–11 (2017).
doi: 10.1038/s41598-016-0028-x
Rohrer, G. S. The role of grain boundary energy in grain boundary complexion transitions. Curr. Opin. Solid State Mater. Sci. 20, 231–239 (2016).
doi: 10.1016/j.cossms.2016.03.001
Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).
doi: 10.1016/j.actamat.2019.12.030
Seah, M. P. Segregation and the Strength of Grain Boundaries. Proc. R. Soc. Lond. A. Math. Phys. Sci. 349, 535–554 (1976).
Ming, K., Li, L., Li, Z., Bi, X. & Wang, J. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys. Sci. Adv. 5, 1–8 (2019).
doi: 10.1126/sciadv.aay0639
Wei, Y., Su, C. & Anand, L. A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater. 54, 3177–3190 (2006).
doi: 10.1016/j.actamat.2006.03.007
Ashby, M. F., Abulawi, J. & Kong, H. S. Temperature Maps for Frictional Heating in Dry Sliding. Tribol. Trans. 34, 577–587 (1991).
doi: 10.1080/10402009108982074
Edington, J. W., Melton, K. N. & Cutler, C. P. Superplasticity. Prog. Mater. Sci. 21, 61–170 (1976).
doi: 10.1016/0079-6425(76)90005-0
Kustas, A. B. et al. Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS). Addit. Manuf. 21, 41–52 (2018).
Krick, B. A. & Sawyer, W. G. Space tribometers: Design for exposed experiments on orbit. Tribol. Lett. 41, 303–311 (2011).
doi: 10.1007/s11249-010-9689-y
Hinkle, A. R. et al. Low friction in BCC metals via grain boundary sliding. Phys. Rev. Mater (Submitted, In Peer Review).
Erickson, G. M. et al. Paleo-tribology: Development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions selfwear to enable functionality. Surf. Topogr. Metrol. Prop. 4 (2016).
Schmitz, T. L., Action, J. E., Ziegert, J. C. & Sawyer, W. G. The difficulty of measuring low friction: Uncertainty analysis for friction coefficient measurements. J. Tribol. Asme 127, 673–678 (2005).
doi: 10.1115/1.1843853

Auteurs

Morgan R Jones (MR)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

Brendan L Nation (BL)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

John A Wellington-Johnson (JA)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

John F Curry (JF)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

Andrew B Kustas (AB)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

Ping Lu (P)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

Michael Chandross (M)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA.

Nicolas Argibay (N)

Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87123, USA. nargiba@sandia.gov.

Classifications MeSH