Orientation control of ideal blue phase photonic crystals.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 Jun 2020
23 Jun 2020
Historique:
received:
06
02
2020
accepted:
26
05
2020
entrez:
25
6
2020
pubmed:
25
6
2020
medline:
25
6
2020
Statut:
epublish
Résumé
Three-dimensional (3D) photonic crystals like Blue Phases, self-assemble in highly organized structures with a sub-micrometer range periodicity, producing selective Bragg reflections in narrow bands. Current fabrication techniques are emerging at a fast pace, however, manufacturing large 3D monocrystals still remains a challenge, and controlling the crystal orientation of large crystals has not yet been achieved. In this work, we prepared ideal 3D Blue Phase macrocrystals with a controlled crystal orientation. We designed a method to obtain large monocrystals at a desired orientation and lattice size (or reflection wavelength) by adjusting the precursor materials formulation and a simple surface treatment. Moreover, using the same method, it is possible to predict unknown lattice orientations of Blue Phases without resorting to Kossel analysis. Producing large 3D photonic crystals that are also functional tunable structures is likely to have a direct impact on new photonic applications, like microcavity lasers, displays, 3D lasers, or biosensors.
Identifiants
pubmed: 32576875
doi: 10.1038/s41598-020-67083-6
pii: 10.1038/s41598-020-67083-6
pmc: PMC7311397
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
10148Références
Yoshida, H. & Kobashi, J. Flat optics with cholesteric and blue phase liquid crystals. Liq. Cryst. 43(13–15), 1–11 (2016).
Oton, E., Netter, E., Nakano, T., Katayama, Y. D. & Inoue, F. Monodomain blue phase liquid crystal layers for phase modulation. Sci. Rep. 7, 44575 (2017).
doi: 10.1038/srep44575
Kikuchi, H. et al. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002).
doi: 10.1038/nmat712
Takahashi, M. et al. Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces. J. Phys. D, 51(10) (2018).
Claus, H. et al. Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation. Liq. Cryst. 43(5), 688–693 (2016).
doi: 10.1080/02678292.2016.1139199
Lin, J.-D. et al. Microstructure-Stabilized Blue Phase Liquid Crystals. ACS Omega 3(11), 15435–15441 (2018).
doi: 10.1021/acsomega.8b01749
Chen, C. et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 8, 727 (2017).
doi: 10.1038/s41467-017-00822-y
Zheng, Z.G. et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal. Adv. Mater. 29(42) (2017).
Li, X. et al. Sculpted grain boundaries in soft crystals. Sci. Adv. 5(11), eaax9112 (2019).
doi: 10.1126/sciadv.aax9112
Li, X. et al. Perfection in Nucleation and Growth of Blue-Phase Single Crystals: Small Free-Energy Required to Self-Assemble at Specific Lattice Orientation. ACS Appl. Mater. Interfaces 11(9), 9487–9495 (2019).
doi: 10.1021/acsami.8b18078
Miller, R. J. & Gleeson, H. F. Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases. Phys. Rev. E 52(5), 5011–5016 (1995).
doi: 10.1103/PhysRevE.52.5011
Morniroli, J.-P. Large angle convergent beam electron diffraction: applications to crystal defects, (Taylor & Francis, CRC Press, Boca Raton, Florida, 2004).
Belyakov, V.A. Optics of Chiral Liquid Crystals in Diffraction Optics of Complex-Structured Periodic Media, 80–139, (Ed. Springer, Springer-Verlag New York, 1992).
Hornreich, R. M. & Shtrikman, S. Theory of structure and properties of cholesteric blue phases. Phys. Rev. A 24, 635–8 (1981).
doi: 10.1103/PhysRevA.24.635
Chen, Y. & Wu, S.-T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J. Appl. Polym. Sci. 131, 40556 (2014).
Ligon, S. C. et al. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 117(15), 10212–10290 (2017).
doi: 10.1021/acs.chemrev.7b00074
Lai, N. D. et al. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13(23), 9605–9611 (2005).
doi: 10.1364/OPEX.13.009605
Mizeikis, V. et al. Direct laser writing of optical field concentrators based on chirped three-dimensional photonic crystals. Proc. SPIE 11292, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII, 1129206 (2020).
Martinez-Gonzalez, J. A. et al. Directed self-assembly of liquid crystalline blue-phases into ideal single- crystals. Nat. Commun. 8, 15854 (2017).
doi: 10.1038/ncomms15854
Funfschilling, J. & Schadt, M. Fast responding and highly multiplexible distorted helix ferroelectric liquid-crystal displays. J. Appl. Phys. 66, 3877 (1989).
doi: 10.1063/1.344452
Oton, J. M., Pena, J. M. S., Quintana, X., Gayo, J. L. & Urruchi, V. Asymmetric switching of antiferroelectric liquid-crystal cells. Appl. Phys. Lett. 78, 2422 (2001).
doi: 10.1063/1.1365945
Rabilloud, G. High-Performance Polymers: Chemistry and Applications, Vol.3, Polyimides in Electronics (Ed. Technip, Paris, France, 2000).
Vilfan, M., Mertelj, A. & Copic, M. Dynamic light scattering measurements of azimuthal and zenithal anchoring of nematic liquid crystals. Phys. Rev. E 65(4)1, 041712, (2002).
Kula, P., Herman, J. & Strzezysz, O. Synthesis and properties of terphenyl- and quaterphenyl-based chiral diesters. Liq. Cryst. 40, 83–90 (2013).
doi: 10.1080/02678292.2012.733033