Emulating tightly bound electrons in crystalline solids using mechanical waves.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 Jun 2020
23 Jun 2020
Historique:
received:
11
02
2020
accepted:
28
05
2020
entrez:
25
6
2020
pubmed:
25
6
2020
medline:
25
6
2020
Statut:
epublish
Résumé
Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.
Identifiants
pubmed: 32576887
doi: 10.1038/s41598-020-67108-0
pii: 10.1038/s41598-020-67108-0
pmc: PMC7311533
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
10229Références
Kittel, C. Introduction to Solid State Physics (Wiley, 2005).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Hold, Reinhart & Winston, 1976).
Goringe, C. M., Bowler, D. R. & Hernández, E. Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997).
doi: 10.1088/0034-4885/60/12/001
Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
doi: 10.1103/RevModPhys.81.109
Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 1–62 (2017).
doi: 10.1088/1361-6633/aa74ef
Zhao, K., Zhao, M., Wang, Z. & Fan, Y. Tight-binding model for the electronic structures of SiC and BN nanoribbons. Phys. E 43, 440–445 (2010).
doi: 10.1016/j.physe.2010.08.025
Hattori, A. et al. Edge states of hydrogen terminated monolayer materials: silicene, germanene and stanene ribbons. J. Phys.: Condens. Matter 29, 1–10 (2017).
Pastawski, H. M., Torres, L. E. F. F. & Medina, E. Electron–phonon interaction and electronic decoherence in molecular conductors. Chem. Phys. 281, 257–278 (2002).
doi: 10.1016/S0301-0104(02)00565-7
Singha, A. et al. Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice. Science 332, 1176–1179 (2011).
doi: 10.1126/science.1204333
Kraemer, M., Menotti, C., Pitaevskii, L. & Sandro, S. Bose-Einstein condensates in 1D optical lattices: compressibility, Bloch bands and elementary excitations. Eur. Phys. J. D 27, 247–261 (2003).
doi: 10.1140/epjd/e2003-00284-4
Meade, R. D., Devenyi, A., & Joannopoulos, J. D. Novel applications of photonic band gap materials: Low‐loss bends and high Q cavities. J. Appl. Phys. 75, 4753 (1994).
Villeneuve, P. R., Fan, S. & Joannopoulos, J. D. Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54, 7837 (1996).
Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. A. Opt. Lett. 24, 711 (1999).
Bayindir, M., Temelkuran, B. & Ozbay, E. Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals. Phys. Rev. Lett. 84, 2140–2143 (2000).
doi: 10.1103/PhysRevLett.84.2140
Bayindir, M. & Ozbay, E. Coupled-Cavity Structures in Photonic Crystals. Mat. Res. Soc. Symp. Proc. 722, 368–379 (2002).
doi: 10.1557/PROC-722-L2.4
Mattarelli, M., Secchi, M. & Montagna, M. Phononic crystals of spherical particles: a tight binding approach. J. Chem. Phys. 139, 174710 (2013).
doi: 10.1063/1.4828436
Sainidou, R., Stefanou, N. & Modinos, A. Linear chain of weakly coupled defects in a three-dimensional phononic crystal: A model acoustic waveguide. Phys. Rev. B 74, 172302 (2006).
doi: 10.1103/PhysRevB.74.172302
Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–20025 (1993).
doi: 10.1103/PhysRevLett.71.2022
Sigalas, M. M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993).
doi: 10.1016/0038-1098(93)90888-T
Munday, J. N., Brad Bennett, C. & Robertson, W. W. Band gaps and defects modes in periodically structured waveguides. J. Acoust. Soc. Am. 112, 1353–1358 (2002).
doi: 10.1121/1.1497625
Khelif, A. et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003).
doi: 10.1103/PhysRevB.68.214301
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 1–5 (2015).
doi: 10.1038/ncomms7710
Bittner, S. et al. Bound states in sharply bent waveguides: Analytical and experimental approach. Phys. Rev. E 87, 042912 (2013).
doi: 10.1103/PhysRevE.87.042912
Rivera-Mociños, E. & Sadurní, E. Inverse lattice design and its application to bent waveguides. J. Phys. A: Math. Theor. 49, 175302 (2016).
doi: 10.1088/1751-8113/49/17/175302
Ramírez-Ramírez, F. et al. Emmulating Tunneling with elastic vibrating beams. Progress in Electromagnetics Research Symposium (PIERS-Toyama), 410–413 (2008).
Morales, A., Gutiérrez, L. & Flores, J. Improved eddy current driver detector for elastic vibrations. Am. J. Phys. 69, 517–522 (2001).
doi: 10.1119/1.1336834
Franco-Villafañe, J. A. et al. Acoustic resonance spectroscopy for the advanced undergraduate laboratory. Eur. J. Phys. 33, 1761–1769 (2012).
doi: 10.1088/0143-0807/33/6/1761
Morales, A., Méndez-Sánchez, R. A. & Flores, J. Topological defects in 1D elastic waves. Phys. E 19, 289–291 (2003).
doi: 10.1016/S1386-9477(03)00233-9
Marcoš, P. & Soukoulis, C. M. Wave propagation: from electrons to photonic crystals and left-handed materials. (Princeton University Press, 2008).
Matlack, K. H., Serra-Garcia, M., Palermo, A., Huber, S. D. & Daraio, C. Designing perturbative metamaterials from discrete models. Nature Mater 17, 323–328 (2018).
doi: 10.1038/s41563-017-0003-3
Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).
doi: 10.1038/nature25156
Morales, A., Flores, J., Gutiérrez, L. & Méndez-Sánchez, R. A. Compressional and torsional wave amplitudes in rods. J. Acoust. Soc. Am. 112, 1961–1967 (2002).
doi: 10.1121/1.1509431
Arreola-Lucas, A. et al. Experimental Evidence of Rainbow Trapping and Bloch Oscillations of Torsional Waves in Chirped Metallic Beam. Sci. Rep. 9, 1860 (2019).
doi: 10.1038/s41598-018-37842-7
Behnia, S. & Rahimi, F. Quantum Chaotic Behavior in Zigzag Graphene Nanoribbon: Effect of Impurity and Electric Field. J. Phys. Soc. Jpn. 87, 114602 (2018).
doi: 10.7566/JPSJ.87.114602
Flores-Olmedo, E. et al. Experimental evidence of coherent transport. Sci. Rep. 6, 25157 (2016).
doi: 10.1038/srep25157
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).
doi: 10.1103/RevModPhys.84.1419
Romano, M. C., Vellasco-Gomes, A. & Bruno-Alfonso, A. Wannier functions and the calculation of localized modes in one-dimensional photonic crystals. J. Opt. Soc. Am. B 35, 826–834 (2018).
doi: 10.1364/JOSAB.35.000826