Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning.

Brain extraction Brain tumor CaPTk Deep learning DeepMedic FCN GBM Glioblastoma Skull-stripping U-Net

Journal

Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)
Titre abrégé: Brainlesion
Pays: Switzerland
ID NLM: 101749001

Informations de publication

Date de publication:
Oct 2019
Historique:
entrez: 25 6 2020
pubmed: 25 6 2020
medline: 25 6 2020
Statut: ppublish

Résumé

Skull-stripping is an essential pre-processing step in computational neuro-imaging directly impacting subsequent analyses. Existing skull-stripping methods have primarily targeted non-pathologicallyaffected brains. Accordingly, they may perform suboptimally when applied on brain Magnetic Resonance Imaging (MRI) scans that have clearly discernible pathologies, such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. Here we present a performance evaluation of publicly available implementations of established 3D Deep Learning architectures for semantic segmentation (namely DeepMedic, 3D U-Net, FCN), with a particular focus on identifying a skull-stripping approach that performs well on brain tumor scans, and also has a low computational footprint. We have identified a retrospective dataset of 1,796 mpMRI brain tumor scans, with corresponding manually-inspected and verified gold-standard brain tissue segmentations, acquired during standard clinical practice under varying acquisition protocols at the Hospital of the University of Pennsylvania. Our quantitative evaluation identified DeepMedic as the best performing method (

Identifiants

pubmed: 32577629
doi: 10.1007/978-3-030-46640-4_6
pmc: PMC7311100
mid: NIHMS1597912
doi:

Types de publication

Journal Article

Langues

eng

Pagination

57-68

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS042645
Pays : United States
Organisme : NIH HHS
ID : S10 OD023495
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA242871
Pays : United States

Références

Neuroimage. 2004;23 Suppl 1:S151-60
pubmed: 15501084
Dis Model Mech. 2017 May 1;10(5):499-502
pubmed: 28468935
Radiology. 2014 Oct;273(1):168-74
pubmed: 24827998
Cancer Cell. 2018 Jul 9;34(1):163-177.e7
pubmed: 29990498
Radiology. 2013 May;267(2):560-9
pubmed: 23392431
IEEE Trans Med Imaging. 2011 Sep;30(9):1617-34
pubmed: 21880566
Med Image Anal. 2017 Jan;35:250-269
pubmed: 27475911
Sci Data. 2017 Sep 05;4:170117
pubmed: 28872634
JAMA Oncol. 2016 Dec 01;2(12):1636-1642
pubmed: 27541161
Hum Brain Mapp. 2010 May;31(5):798-819
pubmed: 20017133
Neuro Oncol. 2018 Jul 5;20(8):1068-1079
pubmed: 29617843
Neuroimage. 2001 May;13(5):856-76
pubmed: 11304082
J Med Imaging (Bellingham). 2018 Jan;5(1):011018
pubmed: 29340286
Neuroimage. 2018 Apr 15;170:482-494
pubmed: 28807870
Neuroimage. 2012 Feb 1;59(3):2362-73
pubmed: 21945694
Acad Radiol. 2013 Dec;20(12):1566-76
pubmed: 24200484
Neuroimage Clin. 2016 Mar 12;12:34-40
pubmed: 27358767
Neuroimage. 2016 Feb 15;127:186-195
pubmed: 26679328
Med Image Anal. 2017 Feb;36:61-78
pubmed: 27865153
Clin Cancer Res. 2017 Aug 15;23(16):4724-4734
pubmed: 28428190
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Brainlesion. 2018;10670:133-145
pubmed: 29733087
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024
pubmed: 25494501
Neuroinformatics. 2019 Jan;17(1):83-102
pubmed: 29946897
Neuro Oncol. 2018 Mar 27;20(4):576-577
pubmed: 29474647
Lancet. 2019 Feb 16;393(10172):678-688
pubmed: 30782343
Neuroimage. 2006 Jul 1;31(3):1116-28
pubmed: 16545965
Radiology. 2014 Aug;272(2):484-93
pubmed: 24646147

Auteurs

Siddhesh P Thakur (SP)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India.

Jimit Doshi (J)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Sarthak Pati (S)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Sung Min Ha (SM)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Chiharu Sako (C)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Sanjay Talbar (S)

Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India.

Uday Kulkarni (U)

Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India.

Christos Davatzikos (C)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Guray Erus (G)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Spyridon Bakas (S)

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Classifications MeSH