Coordination of the unfolded protein response during hepatic steatosis identifies CHOP as a specific regulator of hepatocyte ballooning.
Correlation network
ER stress
Liver
Pathogenesis
Journal
Cell stress & chaperones
ISSN: 1466-1268
Titre abrégé: Cell Stress Chaperones
Pays: Netherlands
ID NLM: 9610925
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
28
04
2020
accepted:
17
06
2020
revised:
28
04
2020
pubmed:
25
6
2020
medline:
22
9
2021
entrez:
25
6
2020
Statut:
ppublish
Résumé
The unfolded protein response (UPR) is an adaptive response that is implicated in multiple metabolic pathologies, including hepatic steatosis. In the present study, we analyzed publicly available RNAseq data to explore how the execution of the UPR is orchestrated in specimens that exhibit hepatocyte ballooning, a landmark feature of steatosis. By focusing on a panel of well-established UPR genes, we assessed how the UPR is coordinated with the whole transcriptome in specimens with or without hepatocyte ballooning. Our analyses showed that neither average levels nor correlation in expression between major UPR genes such as HSPA5 (BiP/GRP78), HSP90b1 (GRP94), or DDIT3 (CHOP) is altered in different groups. However, a panel of transcripts depending on the stringency of the analysis ranged from 16 to 372 lost its coordination with HSPA5, the major UPR chaperone, when hepatocyte ballooning occurred. In 13 genes, the majority of which is associated with metabolic processes, and the coordination with the HSPA5 was reversed from positive to negative in livers with ballooning hepatocytes. In order to examine if during ballooning, UPR genes abolish established and acquire novel functionalities, we performed gene ontology analyses. These studies showed that among the various UPR genes interrogated, only DDIT3 was not associated with conventional functions linked to endoplasmic reticulum stress during ballooning, while HSPA90b1 exhibited the highest function retention between the specimens with or without ballooning. Our results challenge conventional notions on the impact of specific genes in disease and suggest that besides abundance, the mode of coordination of UPR may be more important for disease development.
Identifiants
pubmed: 32577989
doi: 10.1007/s12192-020-01132-x
pii: 10.1007/s12192-020-01132-x
pmc: PMC7591657
doi:
Substances chimiques
Endoplasmic Reticulum Chaperone BiP
0
HSPA5 protein, human
0
Heat-Shock Proteins
0
Transcription Factor CHOP
147336-12-7
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
969-978Références
Nat Rev Neurol. 2017 Aug;13(8):477-491
pubmed: 28731040
PLoS Comput Biol. 2007 Mar 23;3(3):e39
pubmed: 17381235
Annu Rev Biochem. 2012;81:767-93
pubmed: 22443930
Dev Cell. 2008 Dec;15(6):829-40
pubmed: 19081072
Hepatology. 2011 Jul;54(1):229-39
pubmed: 21503947
J Hepatol. 2010 Oct;53(4):719-23
pubmed: 20624660
Sci Rep. 2019 Aug 29;9(1):12541
pubmed: 31467298
Gastroenterol Hepatol (N Y). 2015 Mar;11(3):167-75
pubmed: 27099587
J Clin Invest. 2009 May;119(5):1201-15
pubmed: 19363290
Mol Cell Biol. 2006 Aug;26(15):5688-97
pubmed: 16847323
BMC Bioinformatics. 2009 Feb 03;10:48
pubmed: 19192299
Am J Physiol Gastrointest Liver Physiol. 2010 Jul;299(1):G236-43
pubmed: 20430872
Biochem J. 2002 Aug 1;365(Pt 3):561-75
pubmed: 12006103
Hepatology. 2014 Mar;59(3):947-57
pubmed: 24027047
Nat Rev Drug Discov. 2013 Sep;12(9):703-19
pubmed: 23989796
World J Gastroenterol. 2008 Jun 14;14(22):3476-83
pubmed: 18567074
Nat Cell Biol. 2013 May;15(5):481-90
pubmed: 23624402
Glycobiology. 2005 Apr;15(4):421-36
pubmed: 15537790
Mol Cell Biol. 2003 Nov;23(21):7448-59
pubmed: 14559994
Cell Physiol Biochem. 2010;25(6):761-6
pubmed: 20511722
Mol Cell. 2017 Jun 15;66(6):761-771
pubmed: 28622521
Mol Biol Cell. 2010 Sep 1;21(17):2975-86
pubmed: 20631254
J Cell Physiol. 2015 Jul;230(7):1413-20
pubmed: 25546813
Cold Spring Harb Symp Quant Biol. 2003;68:237-43
pubmed: 15338623
J Hepatol. 2008 May;48(5):821-8
pubmed: 18329127
Oncogene. 2014 Oct 16;33(42):4997-5005
pubmed: 24141775
J Clin Invest. 2002 Feb;109(4):525-32
pubmed: 11854325
Brief Bioinform. 2018 Jul 20;19(4):575-592
pubmed: 28077403
J Lipid Res. 2016 Aug;57(8):1329-38
pubmed: 27146479
J Clin Invest. 2008 Oct;118(10):3378-89
pubmed: 18776938
Cell Prolif. 2020 Jan;53(1):e12706
pubmed: 31642559
Genes Dev. 1994 Feb 15;8(4):453-64
pubmed: 8125258
Mol Cell Biol. 1989 Oct;9(10):4196-203
pubmed: 2573827
Mol Biol Cell. 2008 Oct;19(10):4404-20
pubmed: 18701708
DNA Cell Biol. 2019 Sep;38(9):969-981
pubmed: 31355672
Dis Model Mech. 2019 Feb 27;12(2):
pubmed: 30733237
Pharmacol Ther. 2019 Nov;203:107401
pubmed: 31419516
Am J Physiol Endocrinol Metab. 2010 May;298(5):E1027-35
pubmed: 20159858
Am J Dermatopathol. 2006 Oct;28(5):410-2
pubmed: 17012915
J Biol Chem. 2013 Jun 28;288(26):18624-42
pubmed: 23720735
Cold Spring Harb Perspect Biol. 2013 Mar 01;5(3):a013169
pubmed: 23388626