Influence of Protein Modification and Glycosylation in the Catalytic Hydrogen Evolution Reaction of Avidin and Neutravidin: An Electrochemical Analysis.

constant current chronopotentiometry electrochemical analysis glycoproteins, glycosylation, protein modifications

Journal

ChemPlusChem
ISSN: 2192-6506
Titre abrégé: Chempluschem
Pays: Germany
ID NLM: 101580948

Informations de publication

Date de publication:
06 2020
Historique:
received: 14 04 2020
revised: 02 06 2020
entrez: 25 6 2020
pubmed: 25 6 2020
medline: 25 6 2020
Statut: ppublish

Résumé

To investigate glycans' influence on the behavior of glycoproteins on charged surfaces, avidin and its nonglycosylated and neutralized version neutravidin were studied by label-free chronopotentiometric stripping (CPS) analysis and alternating current voltammetry combined with a mercury electrode. Despite neutravidin's and avidin's similar size and structure, their CPS responses differed due to the different amounts of catalytically active free amino groups of lysine and arginine residues. Acetylation of the proteins resulted in the suppression of their CPS responses by almost four times for avidin and by about 50 % for neutravidin, respectively. On the other hand, the presence of glycans in the acetylated avidin induced about 30 % higher chronopotentiometric response compared to the acetylated neutravidin. We suggest that the presence, size and composition of the glycans influenced the CPS signal due to differences in the orientation at a charged surface. The obtained results can be utilized in glycoprotein research.

Identifiants

pubmed: 32578950
doi: 10.1002/cplu.202000298
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1347-1353

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

N. M. Green, Methods Enzymol. 1990, 184, 51-67.
N. M. Green, Adv. Protein Chem. 1975, 29, 85-133.
C. Rosano, P. Arosio, M. Bolognesi, Biomol. Eng. 1999, 16, 5-12.
M. Wilchek, E. A. Bayer, Methods Enzymol. 1990, 184, 5-13.
R. C. Bruch, H. B. White, Biochemistry 1982, 21, 5334-5341.
Y. Hiller, J. M. Gershoni, E. A. Bayer, M. Wilchek, Biochem. J. 1987, 248, 167-171.
 
K. K. Palaniappan, C. R. Bertozzi, Chem. Rev. 2016, 116, 14277-14306;
A. Jain, A. Barve, Z. Zhao, W. Jin, K. Cheng, Mol. Pharmaceutics 2017, 14, 1517-1527.
E. Palecek, J. Tkac, M. Bartosik, T. Bertok, V. Ostatna, J. Palecek, Chem. Rev. 2015, 115, 2045-2108..
Essentials of Glycobiology, 3rd edition ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2017.
F. A. Armstrong, in Bioelectrochemistry, Vol. 9 (Ed.: G. S. Wilson), Wiley-VCH, Weinheim, 2002, pp. 11-29.
T. Doneux, V. Ostatna, E. Palecek, Electrochim. Acta 2011, 56, 9337-9343.
 
V. Dorcak, V. Ostatna, E. Palecek, Electrochem. Commun. 2013, 31, 80-83;
V. Vargova, M. Zivanovic, V. Dorcak, E. Palecek, V. Ostatna, Electroanalysis 2013, 25, 2130-2135.
L. Havran, S. Billova, E. Palecek, Electroanalysis 2004, 16, 1139-1148.
 
S. Belicky, H. Cernocka, T. Bertok, A. Holazova, K. Reblova, E. Palecek, J. Tkac, V. Ostatna, Bioelectrochemistry 2017, 117, 89-94;
V. Vargova, R. Helma, E. Palecek, V. Ostatna, Anal. Chim. Acta 2016, 935, 97-103.
 
V. Ostatna, V. Kasalova-Vargova, L. Kékedy-Nagy, H. Černocka, E. E. Ferapontova, Bioelectrochemistry 2017, 114, 42-47;
E. Palecek, H. Cernocka, V. Ostatna, L. Navratilova, M. Brazdova, Anal. Chim. Acta 2014, 828, 1-8.
H. Cernocka, N. Izadi, V. Ostatna, S. Strmecki, Electroanalysis 2019, 31, 2007-2011.
H.-X. Zhou, X. Pang, Chem. Rev. 2018, 118, 1691-1741.
M. Trefulka, E. Palecek, Electrochem. Commun. 2014, 48, 52-55.
M. Trefulka, E. Palecek, Electroanalysis 2009, 21, 1763-1766.
C. M. Dundas, D. Demonte, S. Park, Appl. Microbiol. Biotechnol. 2013, 97, 9343-9353.
M. Trefulka, V. Dorcak, J. Krenkova, F. Foret, E. Palecek, Electrochim. Acta 2017, 239, 10-15.
S. F. Rosebrough, D. F. Hartley, J. Nucl. Med. 1996, 37, 1380-1384.
N. Abello, H. A. M. Kerstjens, D. S. Postma, R. Bischoff, J. Proteome Res. 2007, 6, 4770-4776.
E. Melnikova, N. Izadi, M. Gal, V. Ostatna, Electroanalysis 2019, 31, 1868-1872.
D. Aminoff, Biochem. J. 1961, 81, 384-392.
E. Palecek, V. Ostatna, H. Cernocka, A. C. Joerger, A. R. Fersht, J. Am. Chem. Soc. 2011, 133, 7190-7196.
V. Vargová, R. E. Giménez, H. Černocká, D. C. Trujillo, F. Tulli, V. I. P. Zanini, E. Paleček, C. D. Borsarelli, V. Ostatná, Electrochim. Acta 2016, 187, 662-669 .
 
D. Pihikova, P. Kasak, P. Kubanikova, R. Sokol, J. Tkac, Anal. Chim. Acta 2016, 934, 72-79;
E. Dosekova, J. Filip, T. Bertok, P. Both, P. Kasak, J. Tkac, Med. Res. Rev. 2017, 37, 514-626.
A. M. Bond, in Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker Inc., New York, 1980, p. 346.
M. Fojta, L. Havran, R. Kizek, S. Billova, Talanta 2002, 56, 867-874.

Auteurs

Nasim Izadi (N)

Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.

Hana Černocká (H)

Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.

Mojmír Trefulka (M)

Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.

Veronika Ostatná (V)

Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.

Classifications MeSH