The possible role of CREB-BDNF signaling pathway in neuroprotective effects of minocycline against alcohol-induced neurodegeneration: molecular and behavioral evidences.
Animals
Brain-Derived Neurotrophic Factor
/ physiology
Cyclic AMP Response Element-Binding Protein
/ physiology
Ethanol
/ toxicity
Glutathione
/ metabolism
Hippocampus
/ drug effects
Male
Minocycline
/ pharmacology
Morris Water Maze Test
Neurodegenerative Diseases
/ prevention & control
Neuroprotective Agents
/ pharmacology
Oxidative Stress
/ drug effects
Rats
Rats, Wistar
Signal Transduction
/ physiology
BDNF
CREB
alcohol
minocycline
neurodegeneration
Journal
Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
03
08
2019
revised:
02
05
2020
accepted:
18
06
2020
pubmed:
25
6
2020
medline:
5
10
2021
entrez:
25
6
2020
Statut:
ppublish
Résumé
Abuse of alcohol triggers neurodegeneration in human brain. Minocycline has characteristics conferring neuroprotection. Current study evaluates the role of the CREB-BDNF signaling pathway in mediating minocycline's neuroprotective effects against alcohol-induced neurodegeneration. Seventy adult male rats were randomly split into groups 1 and 2 that received saline and alcohol (2 g/kg/day by gavage, once daily), respectively, and groups 3, 4, 5, and 6 were treated simultaneously with alcohol and minocycline (10, 20, 30 and 40 mg/kg I.P, respectively) for 21 days. Group 7 received minocycline alone (40 mg/kg, i.p) for 21 days. Morris water maze (MWM) has been used to assess cognitive activity. Hippocampal neurodegenerative and histological parameters as well as cyclic AMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) levels were assessed. Alcohol impaired cognition, and concurrent therapy with various minocycline doses attenuated alcohol-induced cognition disturbances. Additionally, alcohol administration boosted lipid peroxidation and levels of glutathione in oxidized form (GSSG), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and Bax protein, while decreased reducing type of glutathione (GSH), Bcl-2 protein, phosphorylated CREB, and BDNF levels in rat hippocampus. Alcohol also decreased the activity in the hippocampus of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). In comparison, minocycline attenuated alcohol-induced neurodegeneration; elevating expression levels of P-CREB and BDNF and inhibited alcohol induced histopathological changes in both dentate gyrus (DG) and CA1 of hippocampus. Thus, minocycline is likely to provide neuroprotection against alcohol-induced neurodegeneration through mediation of the P-CREB/BDNF signaling pathway.
Substances chimiques
Brain-Derived Neurotrophic Factor
0
Cyclic AMP Response Element-Binding Protein
0
Neuroprotective Agents
0
Ethanol
3K9958V90M
Minocycline
FYY3R43WGO
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
113-130Subventions
Organisme : Iran University of Medical Sciences
ID : 13496
Informations de copyright
© 2020 Société Française de Pharmacologie et de Thérapeutique.
Références
Ward R.J., Lallemand F., De Witte P. Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or ‘binge drinking’alcohol abuse. Alcohol Alcohol. (2009) 44 128-135.
Motaghinejad M., Ghaleni M.A., Motaghinejad O. Preventive effects of forced exercise against alcohol-induced physical dependency and reduction of pain perception threshold. Int. J. Prevent. Med. (2014) 5 1299.
Cippitelli A., Damadzic R., Frankola K. et al. Alcohol-Induced neurodegeneration, suppression of transforming growth factor-β, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol. Psychiat. (2010) 67 823-830.
Crews F.T., Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. (2009) 44 115-127.
Hermens D.F., Lagopoulos J., Tobias-Webb J. et al. Pathways to alcohol-induced brain impairment in young people: a review. Cortex (2013) 49 3-17.
Heinz A.J., Beck A., Meyer-Lindenberg A., Sterzer P., Heinz A. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat. Rev. Neurosci. (2011) 12 400-413.
Bernardin F., Maheut-Bosser A., Paille F. Cognitive impairments in alcohol-dependent subjects. Front. Psychiatry. (2014) 5 78.
Guerri C., Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol (2010) 44 15-26.
Morris S.A., Eaves D.W., Smith A.R., Nixon K. Alcohol inhibition of neurogenesis: a mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus (2010) 20 596-607.
Collins M.A., Neafsey E.J. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation. Neurotox. Res. (2012) 21 70-78.
Plane J.M., Shen Y., Pleasure D.E., Deng W. Prospects for minocycline neuroprotection. Arch. Neurol. (2010) 67 1442-1448.
Kim H.-S., Suh Y.-H. Minocycline and neurodegenerative diseases. Behav. Brain Res. (2009) 196 168-179.
Sinha-Hikim I., Shen R., Nzenwa I., Gelfand R., Mahata S.K., Sinha-Hikim A.P. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure. Apoptosis (2011) 16 563-573.
Pang T., Wang J., Benicky J., Saavedra J.M. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition. Biochim. Biophys. Acta (2012) 1820(4) 503-510.
Arakawa S., Shirayama Y., Fujita Y. et al. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol. Biochem. Behav. (2012) 100 601-606.
Jin W.-J., Feng S.-W., Feng Z., Lu S.-M., Qi T., Qian Y.-N. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. NeuroReport (2014) 25 1-6.
Monte A.S., de Souza G.C., McIntyre R.S. et al. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: possible involvement of antioxidant and nitrergic pathways. J. Psychopharmacol. (2013) 27 1032-1043.
Jiang W., Desjardins P., Butterworth R.F. Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem. Int. (2009) 55 601-605.
Motaghinejad M., Motevalian M., Abdollahi M., Heidari M., Madjd Z. Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox. Res. (2017) 31 373-399.
Motaghinejad M., Motevalian M., Babalouei F., Abdollahi M., Heidari M., Madjd Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: molecular, biochemical and histological evidences. Brain Res. Bull. (2017) 132 82-98.
Hattiangady B., Rao M.S., Shetty G.A., Shetty A.K. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp. Neurol. (2005) 195 353-371.
Lee I.-A., Lee J.H., Baek N.-I., Kim D.-H. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol. Pharm. Bull. (2005) 28 2106-2110.
Giri P.K., Lu Y., Lei S. et al. Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam exposure in neonatal rats. NeuroReport (2018) 29 153.
Teng Y.D., Choi H., Onario R.C. et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc. Natl. Acad. Sci. (2004) 101 3071-3076.
Liu Z., Fan Y., Won S.J. et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke (2007) 38 146-152.
Wells J.E., Hurlbert R.J., Fehlings M.G., Yong V.W. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain (2003) 126 1628-1637.
Matsukawa N., Yasuhara T., Hara K. et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. (2009) 10 126.
Zhu F., Zheng Y., Ding Y-q et al. Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One (2014) 9 e93966.
Kong F., Chen S., Cheng Y. et al. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats. PLoS One (2013) 8 e61385.
Motaghinejad M., Motevalian M., Fatima S., Hashemi H., Gholami M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed. Pharmacother. (2017) 87 721-740.
Motaghinejad M., Bangash M.Y., Motaghinejad O. Attenuation of alcohol withdrawal syndrome and blood cortisol level with forced exercise in comparison with diazepam. Acta Med. Iran. (2015) 53 311-316.
Spanagel R., Hölter S. Pharmacological validation of a new animal model of alcoholism. J. Neural. Trans. (2000) 107 669-680.
D’Hooge R., De Deyn P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. (2001) 36(1) 60-90.
Motaghinejad M., Motevalian M., Larijani S.F., Khajehamedi Z. Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat. Adv. Biomed. Res. (2015) 4(1) 134.
Motaghinejad M., Fatima S., Karimian M., Ganji S. Protective effects of forced exercise against nicotine-induced anxiety, depression and cognition impairment in rat. J. Basic Clin. Physiol. Pharmacol. (2016) 27(1) 19-27.
Vorhees C.V., Williams M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. (2006) 1 848.
Bromley-Brits K., Deng Y., Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J. Vis. Exp. (2011) 20(53) 2920. https://doi.org/10.3791/2920
Motaghinejad M., Seyedjavadein Z., Motevalian M., Asadi M. The neuroprotective effect of lithium against high dose methylphenidate: possible role of BDNF. Neurotoxicology (2016) 56 40-54.
Motaghinejad M., Motevalian M., Fatima S., Faraji F., Mozaffari S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway. Neurochem. Res. (2017) 42 2921-2932.
Motaghinejad M., Karimian S.M., Motaghinejad O., Shabab B., Asadighaleni M., Fatima S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam. Clin. Pharmacol. (2015) 29 299-309.
Motaghinejad M., Motevalian M., Fatima S. Mediatory role of NMDA, AMPA/kainate, GABAA and Alpha2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci. (2017) 179 37-53.
Motaghinejad M., Motevalian M., Fatima S., Beiranvand T., Mozaffari S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural. Trans. (2017) 124 1369-1387.
Motaghinejad M., Motevalian M., Falak R., Heidari M., Sharzad M., Kalantari E. Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway. J. Neural. Transm. (2016) 123 1463-1477.
Arican O., Aral M., Sasmaz S., Ciragil P. Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. (2005) 2005 273-279.
Demircan N., Safran B., Soylu M., Ozcan A., Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (2006) 20 1366-1369.
Shi Y.-Q., Huang T.-W., Chen L.-M. et al. Ginsenoside Rg1 attenuates amyloid-β content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J. Alzheimers Dis. (2010) 19 977-989.
Lee B.-H., Kim H., Park S.-H., Kim Y.-K. Decreased plasma BDNF level in depressive patients. J. Affect. Disord. (2007) 101 239-244.
Gage G.J., Kipke D.R., Shain W. Whole animal perfusion fixation for rodents. J. Vis. Exp. (2012) 65 e3564.
Tao-Cheng J.H., Gallant P.E., Brightman M.W., Dosemeci A., Reese T.S. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J.Comp. Neurol. (2007) 501 731-740.
Sahay A., Hen R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. (2007) 10 1110-1115.
Jauhar S., Marshall E.J., Smith I.D. Alcohol and cognitive impairment. Adv. Psychiatr. Treat. (2014) 20 304-313.
Xu G., Liu X., Yin Q., Zhu W., Zhang R., Fan X. Alcohol consumption and transition of mild cognitive impairment to dementia. Psychiatry Clin. Neurosci. (2009) 63 43-49.
Choi Y., Kim H.-S., Shin K.Y. et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology (2007) 32 2393.
Zhang L., Li K., Sun R. et al. Minocycline ameliorates cognitive impairment induced by whole-brain irradiation: an animal study. Rad. Oncol. (2014) 9 281.
Brady K.T., Gray K.M., Tolliver B.K. Cognitive enhancers in the treatment of substance use disorders: clinical evidence. Pharmacol. Biochem. Behav. (2011) 99 285-294.
Dean O.M., Data-Franco J., Giorlando F., Berk M. Minocycline. CNS Drugs (2012) 26 391-401.
Cai Z.-Y., Yan Y., Chen R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci. Bull. (2010) 26 28-36.
Das S.K., Vasudevan D. Alcohol-induced oxidative stress. Life Sci. (2007) 81 177-187.
Sonmez E., Kabatas S., Ozen O. et al. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine (2013) 38 1253-1259.
Bonilla E., Contreras R., Medina-Leendertz S., Mora M., Villalobos V., Bravo Y. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology (2012) 294 50-53.
Morimoto N., Shimazawa M., Yamashima T., Nagai H., Hara H. Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res. (2005) 1044 8-15.
Kraus R.L., Pasieczny R., Lariosa-Willingham K., Turner M.S., Jiang A., Trauger J.W. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J. Neurochem. (2005) 94 819-827.
Seitz H.K., Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer (2007) 7 599.
Homsi S., Federico F., Croci N. et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res. (2009) 1291 122-132.
Shimazawa M., Yamashima T., Agarwal N., Hara H. Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res. (2005) 1053 185-194.
Cai Z., Wang C., Chen Y., He W. An antioxidant role by minocycline via enhancing the activation of LKB1/AMPK signaling in the process of cerebral ischemia injury. Curr. Mol. Med. (2018) 18 142-151.
Shanmugam K., Ramakrishna C., Mallikarjuna K., Reddy K.S. Protective effect of ginger against alcohol-induced renal damage and antioxidant enzymes in male albino rats. Indian J. Exp. Biol. (2010) 48 143-149.
Manzo-Avalos S., Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int. J. Environ. Res. Public Health (2010) 7 4281-4304.
Hosseinzadeh H., Sadeghnia H.R., Ziaee T., Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J. Pharm. Pharm. Sci. (2005) 8 387-393.
Shanmugam K., Mallikarjuna K., Reddy K.S. Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats. Indian J. Pharmacol. (2011) 43 330.
Ochiai T., Ohno S., Soeda S., Tanaka H., Shoyama Y., Shimeno H. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci. Lett. (2004) 362 61-64.
Schildknecht S., Pape R., Müller N., Robotta M., Marquardt A., Bürkle A. et al.Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J. Biol. Chem. (2011) 286 4991-5002.
Mottaran E., Stewart S.F., Rolla R. et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease. Free Radic. Biol. Med. (2002) 32 38-45.
Kim B.J., Kim M.-J., Park J.-M. et al. Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat. J. Neurol. Sci. (2009) 279 70-75.
Yrjänheikki J., Tikka T., Keinänen R., Goldsteins G., Chan P.H., Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Sci. (1999) 96 13496-13500.
Li W.-W., Setzu A., Zhao C., Franklin R.J. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J. Neuroimmunol. (2005) 158 58-66.
Stokes J.A., Arbogast T.E., Moya E.A., Fu Z., Powell F.L. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. J. Neurophysiol. (2017) 117 1625-1635.
Kobayashi K., Imagama S., Ohgomori T. et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. (2013) 4 e525.
Sun J.S., Yang Y.J., Zhang Y.Z., Huang W., Li Z.S., Zhang Y. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol. Med. Rep. (2015) 12 2677-2682.
Gil-Mohapel J., Boehme F., Kainer L., Christie B.R. Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res. Rev. (2010) 64 283-303.
Farber N.B., Creeley C.E., Olney J.W. Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiol. Dis. (2010) 40 200-206.
Hassanzadeh K., Habibi-asl B., Farajnia S., Roshangar L. Minocycline prevents morphine-induced apoptosis in rat cerebral cortex and lumbar spinal cord: a possible mechanism for attenuating morphine tolerance. Neurotox. Res. (2011) 19 649-659.
Impey S., Goodman R.H. CREB signaling-timing is everything. Sci Signal. (2001) 2001 pe1.
Carlezon W.A., Duman R.S., Nestler E.J. The many faces of CREB. Trends Neurosci. (2005) 28 436-445.
Mayr B., Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. (2001) 2 599-609.
Martinowich K. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science (2003) 302 890-893.
Zhao Y., Xiao M., He W., Cai Z. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr. Dis. Treat. (2015) 11 507.
Lu Y., Huang Z., Hua Y., Xiao G. Minocycline promotes BDNF expression of N2a cells via Inhibition of miR-155-mediated repression after oxygen-glucose deprivation and reoxygenation. Cell. Mol. Neurobiol. (2018) 38 1305-1313.
Ryu J.K., Franciosi S., Sattayaprasert P., Kim S.U., McLarnon J.G. Minocycline inhibits neuronal death and glial activation induced by β-amyloid peptide in rat hippocampus. Glia (2004) 48 85-90.
Parachikova A., Vasilevko V., Cribbs D.H., LaFerla F.M., Green K.N. Reductions in amyloid-β-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J. Alzheimers Dis. (2010) 21 527-542.
Yoshii A., Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. (2010) 70 304-322.
Cao G., Zhu J., Zhong Q. et al. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology (2013) 67 144-154.
Razavi B.M., Sadeghi M., Abnous K., Vahdati F., Hosseinzadeh H. Study of the role of CREB, BDNF, and VGF neuropeptide in long term antidepressant activity of crocin in the rat cerebellum. Iran. J. Pharm. Res. (2017) 16 1452-1462.