Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures.
Animals
Biomimetic Materials
/ chemistry
Cell Culture Techniques
/ methods
Cell Differentiation
Cell Line
Heterotrimeric GTP-Binding Proteins
/ analysis
Hydrogels
/ chemistry
Mice
Microscopy, Electron
Mouse Embryonic Stem Cells
/ physiology
Organoids
/ physiology
Retinal Cone Photoreceptor Cells
/ physiology
Tissue Engineering
/ methods
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 06 2020
24 06 2020
Historique:
received:
08
07
2019
accepted:
01
06
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
22
12
2020
Statut:
epublish
Résumé
The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.
Identifiants
pubmed: 32581233
doi: 10.1038/s41598-020-67012-7
pii: 10.1038/s41598-020-67012-7
pmc: PMC7314858
doi:
Substances chimiques
Gnat2 protein, mouse
0
Hydrogels
0
Heterotrimeric GTP-Binding Proteins
EC 3.6.5.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10275Références
Veleri, S. et al. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 8, 109–129 (2015).
doi: 10.1242/dmm.017913
Dalkara, D., Goureau, O., Marazova, K. & Sahel, J.-A. Let There Be Light: Gene and Cell Therapy for Blindness. Hum. Gene Ther. 27, 134–147 (2016).
doi: 10.1089/hum.2015.147
Sancho-Pelluz, J. et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol. Neurobiol. 38, 253–269 (2008).
doi: 10.1007/s12035-008-8045-9
Moos, W. H. et al. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future. Biores Open Access 6, 169–181 (2017).
doi: 10.1089/biores.2017.0036
Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).
doi: 10.1038/nature09941
Kaewkhaw, R. et al. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines. Invest. Ophthalmol. Vis. Sci. 57, ORSFl1–ORSFl11 (2016).
doi: 10.1167/iovs.15-17639
Grskovic, M., Javaherian, A., Strulovici, B. & Daley, G. Q. Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10, 915–929 (2011).
doi: 10.1038/nrd3577
Ovando-Roche, P., Georgiadis, A., Smith, A. J., Pearson, R. A. & Ali, R. R. Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration. Curr Stem Cell Rep 3, 112–123 (2017).
doi: 10.1007/s40778-017-0078-4
Wahlin, K. J. et al. Photoreceptor Outer Segment-like Structures in Long-Term 3D Retinas from Human Pluripotent Stem Cells. Sci Rep 7, 766 (2017).
doi: 10.1038/s41598-017-00774-9
Sluch, V. M. et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep 5, 16595 (2015).
doi: 10.1038/srep16595
Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5, 4047 (2014).
doi: 10.1038/ncomms5047
Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).
doi: 10.1016/j.stem.2012.05.009
Kuwahara, A. et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun 6, 6286 (2015).
doi: 10.1038/ncomms7286
Kaewkhaw, R. et al. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Stem Cells 33, 3504–3518 (2015).
doi: 10.1002/stem.2122
Hiler, D. J., Barabas, M. E., Griffiths, L. M. & Dyer, M. A. Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures. Nat Protoc 11, 1955–1976 (2016).
doi: 10.1038/nprot.2016.109
Decembrini, S., Koch, U., Radtke, F., Moulin, A. & Arsenijevic, Y. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Reports 2, 853–865 (2014).
doi: 10.1016/j.stemcr.2014.04.010
Kruczek, K. et al. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration. Stem Cell Reports 8, 1659–1674 (2017).
doi: 10.1016/j.stemcr.2017.04.030
Busskamp, V. et al. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 83, 586–600 (2014).
doi: 10.1016/j.neuron.2014.06.020
Llonch, S., Carido, M. & Ader, M. Organoid technology for retinal repair. Dev. Biol. 433, 132–143 (2018).
doi: 10.1016/j.ydbio.2017.09.028
Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8, 949–955 (2011).
doi: 10.1038/nmeth.1732
Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003).
doi: 10.1242/dev.00723
Swaroop, A., Kim, D. & Forrest, D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 11, 563–576 (2010).
doi: 10.1038/nrn2880
Iwamatsu, T. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 121, 605–618 (2004).
doi: 10.1016/j.mod.2004.03.012
Loosli, F., Winkler, S. & Wittbrodt, J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–654 (1999).
doi: 10.1101/gad.13.6.649
Furukawa, T., Kozak, C. A. & Cepko, C. L. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94, 3088–3093 (1997).
doi: 10.1073/pnas.94.7.3088
Samson, M., Emerson, M. M. & Cepko, C. L. Robust marking of photoreceptor cells and pinealocytes with several reporters under control of the Crx gene. Dev. Dyn. 238, 3218–3225 (2009).
doi: 10.1002/dvdy.22138
Emerson, M. M., Surzenko, N., Goetz, J. J., Trimarchi, J. & Cepko, C. L. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors. Dev. Cell 26, 59–72 (2013).
doi: 10.1016/j.devcel.2013.06.005
Remez, L. A. et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev. Biol. 432, 140–150 (2017).
doi: 10.1016/j.ydbio.2017.09.030
Rath, M. F. et al. Developmental and daily expression of the Pax4 and Pax6 homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells. J. Neurochem. 108, 285–294 (2009).
doi: 10.1111/j.1471-4159.2008.05765.x
Kim, J.-W. et al. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals. Dev. Cell 37, 520–532 (2016).
doi: 10.1016/j.devcel.2016.05.023
Song, H. et al. Transgenic expression of constitutively active RAC1 disrupts mouse rod morphogenesis. Invest. Ophthalmol. Vis. Sci. 55, 2659–2668 (2014).
doi: 10.1167/iovs.13-13649
Khanna, H. Photoreceptor Sensory Cilium: Traversing the Ciliary Gate. Cells 4, 674–686 (2015).
doi: 10.3390/cells4040674
Salinas, R. Y. et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216, 1489–1499 (2017).
doi: 10.1083/jcb.201608081
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
doi: 10.1038/nature12517
Ungrin, M. D., Joshi, C., Nica, A., Bauwens, C. & Zandstra, P. W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3, e1565 (2008).
doi: 10.1371/journal.pone.0001565
Lee, G. H. et al. Networked concave microwell arrays for constructing 3D cell spheroids. Biofabrication 10, 015001 (2017).
doi: 10.1088/1758-5090/aa9876
Ryan, S.-L. et al. Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture. Assay Drug Dev Technol 14, 19–28 (2016).
doi: 10.1089/adt.2015.670
Rajala, R. V. S., Rajala, A., Brush, R. S., Rotstein, N. P. & Politi, L. E. Insulin receptor signaling regulates actin cytoskeletal organization in developing photoreceptors. J. Neurochem. 110, 1648–1660 (2009).
doi: 10.1111/j.1471-4159.2009.06262.x
Applebury, M. L. et al. Transient expression of thyroid hormone nuclear receptor TRbeta2 sets S opsin patterning during cone photoreceptor genesis. Dev. Dyn. 236, 1203–1212 (2007).
doi: 10.1002/dvdy.21155
Brandenberg, N. et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat Biomed Eng https://doi.org/10.1038/s41551-020-0565-2 (2020).