Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 06 2020
24 06 2020
Historique:
received:
26
12
2019
accepted:
02
06
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
22
12
2020
Statut:
epublish
Résumé
Mutations in the PARK2 gene encoding parkin, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While parkin has been implicated in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration in both sporadic and familial PD upon parkin loss-of-function remains unknown. Cultures of isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 knockout (KO) enable mechanistic studies of the effect of parkin deficiency in human dopaminergic neurons. We used such cells to investigate the impact of PARK2 KO on the lysosomal compartment and found a clear link between parkin deficiency and lysosomal alterations. PARK2 KO neurons exhibited a perturbed lysosomal morphology with enlarged electron-lucent lysosomes and an increased lysosomal content, which was exacerbated by mitochondrial stress and could be ameliorated by antioxidant treatment. We also found decreased lysosomal enzyme activity and autophagic perturbations, suggesting an impairment of the autophagy-lysosomal pathway in parkin-deficient cells. Interestingly, activity of the GBA-encoded enzyme, β-glucocerebrosidase, was increased, suggesting the existence of a compensatory mechanism. In conclusion, our data provide a unique characterization of the morphology, content, and function of lysosomes in PARK2 KO neurons and reveal an important new connection between mitochondrial dysfunction and lysosomal dysregulation in PD pathogenesis.
Identifiants
pubmed: 32581291
doi: 10.1038/s41598-020-67091-6
pii: 10.1038/s41598-020-67091-6
pmc: PMC7314796
doi:
Substances chimiques
Ubiquitin-Protein Ligases
EC 2.3.2.27
parkin protein
EC 2.3.2.27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10278Subventions
Organisme : Medical Research Council
ID : MR/N029453/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P007058/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L023784/1
Pays : United Kingdom
Organisme : Parkinson's UK
ID : J-0901
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_MR/N50192X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M024962/1
Pays : United Kingdom
Références
Caviness, J. N. Pathophysiology of Parkinson’s disease behavior - a view from the network. Parkinsonism Relat Disord. 20, S39–43 (2014).
pubmed: 24262185
Hardy, J. Genetic analysis of pathways to Parkinson disease. Neuron. 68, 201–206 (2010).
pubmed: 20955928
pmcid: 2997424
Schapira, A. H. Etiology and pathogenesis of Parkinson disease. Neurol Clin. 27, 583–603 (2009).
pubmed: 19555823
Schapira, A. H. & Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 26, 1049–1055 (2011).
pubmed: 21626550
Arkinson, C. & Walden, H. Parkin function in Parkinson’s disease. Science. 360, 267–268 (2018).
pubmed: 29674580
Dawson, T. M. & Dawson, V. L. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 25, S32–39 (2010).
pubmed: 20187240
pmcid: 4115293
Gasser, T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med. 11, e22, https://doi.org/10.1017/S1462399409001148 (2009).
doi: 10.1017/S1462399409001148
pubmed: 19631006
Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 19, 4861–4870 (2010).
pubmed: 20871098
pmcid: 3583518
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12, 119–131 (2010).
pubmed: 20098416
Poole, A. C., Thomas, R. E., Yu, S., Vincow, E. S. & Pallanck, L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. Plos One. 5, e10054, https://doi.org/10.1371/journal.pone.0010054 (2010).
doi: 10.1371/journal.pone.0010054
pubmed: 20383334
pmcid: 2850930
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 496, 372–376 (2013).
pubmed: 23503661
pmcid: 3641819
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183, 795–803 (2008).
pubmed: 19029340
pmcid: 2592826
Dehay, B. et al. Lysosomal impairment in Parkinson’s disease. Mov Disord. 28, 725–732 (2013).
pubmed: 23580333
pmcid: 5131721
Roosen, D. A. & Cookson, M. R. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener. 11, 73, https://doi.org/10.1186/s13024-016-0140-1 (2016).
doi: 10.1186/s13024-016-0140-1
pubmed: 27927216
pmcid: 5142374
Gegg, M. E. & Schapira, A. H. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiol Dis. 90, 43–50 (2016).
pubmed: 26388395
pmcid: 4838669
Huang, Y., Deng, L., Zhong, Y. & Yi, M. The association between E326K of GBA and the risk of Parkinson’s disease. Parkinsons Dis. 2018, 1048084, https://doi.org/10.1155/2018/1048084 (2018).
doi: 10.1155/2018/1048084
pubmed: 29808112
pmcid: 5901859
O’Regan, G., deSouza, R. M., Balestrino, R. & Schapira, A. H. Glucocerebrosidase mutations in Parkinson disease. J Parkinsons Dis. 7, 411–422 (2017).
pubmed: 28598856
Gan-Or, Z., Dion, P. A. & Rouleau, G. A. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy. 11, 1443–1457 (2015).
pubmed: 26207393
pmcid: 4590678
Gusdon, A. M., Zhu, J., Van Houten, B. & Chu, C. T. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis. 45, 962–972 (2012).
pubmed: 22198378
Ivanova, M. M., Changsila, E., Iaonou, C. & Goker-Alpan, O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. Plos One. 14, e0210617, https://doi.org/10.1371/journal.pone.0210617 (2019).
doi: 10.1371/journal.pone.0210617
pubmed: 30633777
pmcid: 6329517
Pan, T. et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience. 164, 541–551 (2009).
pubmed: 19682553
Fernández-Mosquera, L. et al. Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis. Sci Rep. 7, 45076, https://doi.org/10.1038/srep45076 (2017).
doi: 10.1038/srep45076
pubmed: 28345620
pmcid: 5366864
Ivankovic, D., Chau, K. Y., Schapira, A. H. & Gegg, M. E. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 136, 388–402 (2016).
pubmed: 26509433
Audano, M., Schneider, A. & Mitro, N. Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem. 147, 291–309 (2018).
pubmed: 29804302
Demers-Lamarche, J. et al. Loss of mitochondrial function impairs lysosomes. J Biol Chem. 291, 10263–10276 (2016).
pubmed: 26987902
pmcid: 4858975
Graef, M. & Nunnari, J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J. 30, 2101–2114 (2011).
pubmed: 21468027
pmcid: 3117638
Hönscher, C. et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell. 30, 86–94 (2014).
pubmed: 25026035
Raimundo, N., Fernández-Mosquera, L., Yambire, K. F. & Diogo, C. V. Mechanisms of communication between mitochondria and lysosomes. Int J Biochem Cell Biol. 79, 345–349 (2016).
pubmed: 27613573
Bogetofte, H. et al. PARK2 mutation causes metabolic disturbances and impaired survival of human iPSC-derived neurons. Front Cell Neurosci. 13, 297, https://doi.org/10.3389/fncel.2019.00297 (2019).
doi: 10.3389/fncel.2019.00297
pubmed: 31333417
pmcid: 6624735
Shaltouki, A. et al. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Reports. 4, 847–859 (2015).
pubmed: 25843045
pmcid: 4437475
Bogetofte, H. et al. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiol Dis. 132, 104581, https://doi.org/10.1016/j.nbd.2019.104581 (2019).
doi: 10.1016/j.nbd.2019.104581
pubmed: 31445161
Hurbain, I., Romao, M., Bergam, P., Heiligenstein, X. & Raposo, G. Analyzing lysosome-related organelles by electron microscopy. Methods Mol Biol. 1594, 43–71 (2017).
pubmed: 28456976
Kane, M. S. et al. Current mechanistic insights into the CCCP-induced cell survival response. Biochem Pharmacol. 148, 100–110 (2018).
pubmed: 29277693
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12, 1–222 (2016).
pubmed: 26799652
pmcid: 4835977
Benito-Cuesta, I., Diez, H., Ordoñez, L. & Wandosell, F. Assessment of autophagy in neurons and brain tissue. Cells. 6, 25, https://doi.org/10.3390/cells6030025 (2017).
doi: 10.3390/cells6030025
pmcid: 5617971
Jiménez-Moreno, N., Stathakos, P., Caldwell, M. A. & Lane, J. D. Induced pluripotent stem cell neuronal models for the study of autophagy pathways in human neurodegenerative disease. Cells. 6, 24, https://doi.org/10.3390/cells6030024 (2017).
doi: 10.3390/cells6030024
pmcid: 5617970
Shaban, S. et al. Effects of antioxidant supplements on the survival and differentiation of stem cells. Oxid Med Cell Longev. 2017, 5032102, https://doi.org/10.1155/2017/5032102 (2017).
doi: 10.1155/2017/5032102
pubmed: 28770021
pmcid: 5523230
Dawson, T. M. Parkin and defective ubiquitination in Parkinson’s disease. J Neural Transm Suppl. 70, 209–213 (2006).
Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441, 1157–1161 (2006).
pubmed: 16672980
Fivenson, E. M. et al. Mitophagy in neurodegeneration and aging. Neurochem Int. 109, 202–209 (2017).
pubmed: 28235551
pmcid: 5565781
Fraldi, A., Klein, A. D., Medina, D. L. & Settembre, C. Brain disorders due to lysosomal dysfunction. Annu Rev Neurosci. 39, 277–295 (2016).
pubmed: 27090953
Plotegher, N. & Duchen, M. R. Crosstalk between lysosomes and mitochondria in Parkinson’s disease. Front Cell Dev Biol. 5, 110, https://doi.org/10.3389/fcell.2017.00110 (2017).
doi: 10.3389/fcell.2017.00110
pubmed: 29312935
pmcid: 5732996
Song, P., Trajkovic, K., Tsunemi, T. & Krainc, D. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J Neurosci. 36, 2425–2437 (2016).
pubmed: 26911690
pmcid: 6705497
Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22, 485–498 (2015).
pubmed: 26299452
pmcid: 5026297
Miyamoto, Y. et al. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. Plos One. 6, e16054, https://doi.org/10.1371/journal.pone.0016054 (2011).
doi: 10.1371/journal.pone.0016054
pubmed: 21264221
pmcid: 3022026
Tai, H. et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 13, 99–113 (2017).
pubmed: 27791464
de la Mata, M. et al. Mitochondrial dysfunction in lysosomal storage disorders. Diseases. 4, 31, https://doi.org/10.3390/diseases4040031 (2016).
doi: 10.3390/diseases4040031
pmcid: 5456326
Todkar, K., Ilamathi, H. S. & Germain, M. Mitochondria and lysosomes: discovering bonds. Front Cell Dev Biol. 5, 106, https://doi.org/10.3389/fcell.2017.00106 (2017).
doi: 10.3389/fcell.2017.00106
pubmed: 29270406
pmcid: 5725469
Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 7, 12109, https://doi.org/10.1038/ncomms12109 (2016).
doi: 10.1038/ncomms12109
pubmed: 27357649
pmcid: 4931332
Padman, B. S., Bach, M., Lucarelli, G., Prescott, M. & Ramm, G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy. 9, 1862–1875 (2013).
pubmed: 24150213
Tan, S. et al. Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy. Sci Rep. 9, 727, https://doi.org/10.1038/s41598-018-37400-1 (2019).
doi: 10.1038/s41598-018-37400-1
pubmed: 30679718
pmcid: 6346015
Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 7, 207–219 (2006).
pubmed: 16495942
Fernandes, H. J. et al. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons. Stem Cell Reports. 6, 342–356 (2016).
pubmed: 26905200
pmcid: 4788783
Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 20, 3852–3866 (2011).
pubmed: 21752829
Alroy, J., Garganta, C. & Wiederschain, G. Secondary biochemical and morphological consequences in lysosomal storage diseases. Biochemistry (Mosc). 79, 619–636 (2014).
pubmed: 25108325
Ridler, C. Parkinson disease: Lysosome storage disorder risk genes linked to PD. Nat Rev Neurol. 14, 3, https://doi.org/10.1038/nrneurol.2017.173 (2018).
doi: 10.1038/nrneurol.2017.173
pubmed: 29192262
Kobolák, J. et al. Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Exp Cell Res. 380, 216–233 (2019).
pubmed: 31039347
O’Brien, J. S., Bernett, J., Veath, M. L. & Paa, D. Lysosomal storage disorders. Diagnosis by ultrastructural examination of skin biopsy specimens. Arch Neurol. 32, 592–599 (1975).
pubmed: 809024
Vogler, C., Rosenberg, H. S., Williams, J. C. & Butler, I. Electron microscopy in the diagnosis of lysosomal storage diseases. Am J Med Genet Suppl. 3, 243–255 (1987).
pubmed: 2835968
Guerra, F. et al. Synergistic effect of mitochondrial and lysosomal dysfunction in Parkinson’s disease. Cells. 8, 452, https://doi.org/10.3390/cells8050452 (2019).
doi: 10.3390/cells8050452
pmcid: 6563092
Sánchez-Danés, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med. 4, 380–395 (2012).
pubmed: 22407749
pmcid: 3403296
Bendikov-Bar, I., Rapaport, D., Larisch, S. & Horowitz, M. Parkin-mediated ubiquitination of mutant glucocerebrosidase leads to competition with its substrates PARIS and ARTS. Orphanet J Rare Dis. 9, 86, https://doi.org/10.1186/1750-1172-9-86 (2014).
doi: 10.1186/1750-1172-9-86
pubmed: 24935484
pmcid: 4074407
Monti, D. A. et al. N-Acetyl Cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. Plos One. 11, e0157602, https://doi.org/10.1371/journal.pone.0157602 (2016).
doi: 10.1371/journal.pone.0157602
pubmed: 27309537
pmcid: 4911055
Van Laar, V. S. et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl Cysteine, mitophagy. Neurobiol Dis. 74, 180–193 (2015).
pubmed: 25478815
Engholm-Keller, K. et al. TiSH - a robust and sensitive global phosphoproteomics strategy employing a combination of TiO
pubmed: 22906719