Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types.
community assembly
ecosystem services
functional diversity
green infrastructure
metagenomics
microbial biogeography
microbial ecology
urban ecology
Journal
Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977
Informations de publication
Date de publication:
2020
2020
Historique:
received:
12
02
2019
accepted:
17
04
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
26
6
2020
Statut:
epublish
Résumé
Functional and biogeographical properties of soil microbial communities in urban ecosystems are poorly understood despite their role in metabolic processes underlying valuable ecosystem services. The worldwide emergence of engineered habitats in urban landscapes-green roofs, bioswales, and other types of soil-based green infrastructure-highlights the importance of understanding how environmental changes affect the community assembly processes that shape urban microbial diversity and function. In this study we investigated (1) whether engineered green roofs and bioswales in New York City had distinct microbial community composition and trait-associated diversity compared to non-engineered soils in parks and tree pits, and (2) if these patterns were consistent with divergent community assembly processes associated with engineered specifications of green infrastructure habitats not present in conventional, non-engineered green infrastructure; specifically, tree pit and park lawn soils. We found that green roofs and bioswales each had distinct bacterial and fungal communities, but that community composition and diversity were not significantly associated with geographic distance, suggesting that the processes structuring these differences are related to aspects of the habitats themselves. Bioswales, and to a lesser extent green roofs, also contained increased functional potential compared to conventional GI soils, based on the diversity and abundance of taxa associated with nitrogen cycling, biodegradation, decomposition, and traits positively associated with plant growth. We discuss these results in the context of community assembly theory, concluding that urban soil microbial community composition and diversity in engineered habitats are driven largely by environmental filtering, whereas stochastic processes are more important among non-engineered soils.
Identifiants
pubmed: 32582043
doi: 10.3389/fmicb.2020.00912
pmc: PMC7291602
doi:
Types de publication
Journal Article
Langues
eng
Pagination
912Informations de copyright
Copyright © 2020 Gill, Purnell, Palmer, Stein and McGuire.
Références
Trends Ecol Evol. 2017 Jun;32(6):429-437
pubmed: 28363350
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264
pubmed: 30371820
Proc Biol Sci. 2014 Nov 22;281(1795):
pubmed: 25274366
Biol Rev Camb Philos Soc. 2011 Nov;86(4):792-812
pubmed: 21155964
Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56
pubmed: 24006468
Water Res. 2005 May;39(10):1982-9
pubmed: 15921721
Nature. 2014 Nov 27;515(7528):505-11
pubmed: 25428498
Nucleic Acids Res. 2010 Jan;38(Database issue):D488-91
pubmed: 19767608
PLoS One. 2013;8(3):e58020
pubmed: 23469260
ISME J. 2015 Aug;9(8):1693-9
pubmed: 25535936
PLoS Comput Biol. 2012;8(12):e1002832
pubmed: 23284280
Sci Total Environ. 2019 Feb 15;651(Pt 2):2118-2129
pubmed: 30321733
Appl Environ Microbiol. 2017 Aug 1;83(16):
pubmed: 28576763
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5756-61
pubmed: 25902536
FEMS Microbiol Ecol. 2012 Jun;80(3):735-46
pubmed: 22379979
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9692-8
pubmed: 22615407
Environ Sci Technol. 2014 Jun 3;48(11):6211-9
pubmed: 24803360
Front Microbiol. 2019 May 16;10:982
pubmed: 31156569
ISME J. 2015 Sep;9(9):2003-11
pubmed: 25756681
Environ Sci Technol. 2002 Nov 1;36(21):4547-52
pubmed: 12433163
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8033-40
pubmed: 27432978
Bioinformatics. 2010 Jun 1;26(11):1463-4
pubmed: 20395285
Sci Rep. 2016 Apr 29;6:25279
pubmed: 27125755
ISME J. 2016 Mar;10(3):751-60
pubmed: 26394011
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
Genome Biol. 2014;15(12):550
pubmed: 25516281
BMC Microbiol. 2010 Jul 09;10:189
pubmed: 20618939
Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58
pubmed: 23893311
Biol Lett. 2018 Aug;14(8):
pubmed: 30135118
Sci Total Environ. 2008 Dec 15;407(1):263-72
pubmed: 18814902
J Microbiol. 2014 Sep;52(9):721-8
pubmed: 25224504
Mol Ecol. 1993 Apr;2(2):113-8
pubmed: 8180733
Nat Rev Microbiol. 2010 Jul;8(7):523-9
pubmed: 20531276
Appl Environ Microbiol. 2012 Apr;78(7):2316-27
pubmed: 22287013
Microb Ecol. 1991 Dec;21(1):49-72
pubmed: 24194201
Nat Rev Microbiol. 2012 May 14;10(7):497-506
pubmed: 22580365
Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
pubmed: 19004872
Bioinformatics. 2011 Feb 15;27(4):592-3
pubmed: 21169378
Trends Ecol Evol. 2006 Apr;21(4):186-91
pubmed: 16701084
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Q Rev Biol. 2010 Jun;85(2):183-206
pubmed: 20565040
J Environ Qual. 2003 May-Jun;32(3):1144-9
pubmed: 12809317
Microbiol Mol Biol Rev. 2017 Oct 11;81(4):
pubmed: 29021219