Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.
Journal
The journal of physical chemistry. C, Nanomaterials and interfaces
ISSN: 1932-7447
Titre abrégé: J Phys Chem C Nanomater Interfaces
Pays: United States
ID NLM: 101299949
Informations de publication
Date de publication:
21 May 2020
21 May 2020
Historique:
received:
13
03
2020
revised:
30
04
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
26
6
2020
Statut:
ppublish
Résumé
Natural methane hydrates are estimated to be the largest source of unexploited hydrocarbon fuel. The ideal conditions for methane hydrate formation are low temperatures and high pressures. On the other hand, recent experimental studies suggest that porous materials, thanks to their confinement effects, can enable methane hydrate formation at milder conditions, although there has not been a consensus on this. A number of studies have investigated methane hydrate growth in confinement by employing molecular simulations; however, these were carried out at either very high pressures or very low temperatures. Therefore, the effects of confinement on methane hydrate growth at milder conditions have not yet been elaborated by molecular simulations. In order to address this, we carried out a systematic study by performing molecular dynamics (MD) simulations of methane water systems. Using a direct phase coexistence approach, microsecond-scale MD simulations in the isobaric-isothermal (NPT) ensemble were performed in order to study the behavior of methane hydrates in the bulk and in confined nanospaces of hydroxylated silica pores at external pressures ranging from 1 to 100 bar and a simulation temperature corresponding to a 2 °C experimental temperature. We validated the combination of the TIP4P/ice water and TraPPE-UA methane models in order to correctly predict the behavior of methane hydrates in accordance to their phase equilibria. We also demonstrated that the dispersion corrections applied to short-range interactions lead to artificially induced hydrate growth. We observed that in the confinement of a hydroxylated silica pore, a convex-shaped methane nanobuble forms, and methane hydrate growth primarily takes place in the center of the pore rather than the surfaces where a thin water layer exists. Most importantly, our study showed that in the nanopores methane hydrate growth can indeed take place at pressures which would be too low for the growth of methane hydrates in the bulk.
Identifiants
pubmed: 32582402
doi: 10.1021/acs.jpcc.0c02246
pmc: PMC7304911
doi:
Types de publication
Journal Article
Langues
eng
Pagination
11015-11022Informations de copyright
Copyright © 2020 American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
J Chem Phys. 2010 Aug 14;133(6):064507
pubmed: 20707575
J Phys Chem A. 2009 Mar 5;113(9):1711-6
pubmed: 19209919
Phys Chem Chem Phys. 2017 Jun 21;19(24):15657-15661
pubmed: 28530729
Science. 2009 Nov 20;326(5956):1095-8
pubmed: 19815725
Nature. 2005 May 26;435(7041):479-82
pubmed: 15917805
Phys Chem Chem Phys. 2011 Nov 28;13(44):19951-9
pubmed: 21997437
J Phys Chem A. 2009 Mar 12;113(10):1913-21
pubmed: 19128002
J Chem Phys. 2015 Jan 28;142(4):044501
pubmed: 25637989
Chem Soc Rev. 2002 May;31(3):157-67
pubmed: 12122641
Angew Chem Int Ed Engl. 2004 Jun 21;43(25):3310-3
pubmed: 15213961
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3420-6
pubmed: 10097052
J Phys Chem B. 2012 Mar 15;116(10):3188-97
pubmed: 22369505
J Phys Chem B. 2006 Feb 16;110(6):2782-92
pubmed: 16471886
Chemphyschem. 2018 Jun 5;19(11):1298-1314
pubmed: 29537620
Nature. 2003 Nov 20;426(6964):353-63
pubmed: 14628065
J Am Chem Soc. 2004 Aug 4;126(30):9407-12
pubmed: 15281833
Phys Chem Chem Phys. 2011 Nov 28;13(44):19856-64
pubmed: 21879064
Int J Mol Sci. 2016 May 26;17(6):
pubmed: 27240339
Nat Commun. 2015 Mar 02;6:6432
pubmed: 25728378
J Chem Phys. 2005 Jun 15;122(23):234511
pubmed: 16008466
Langmuir. 2009 Oct 6;25(19):11549-54
pubmed: 19627074
Phys Chem Chem Phys. 2015 Apr 14;17(14):8870-6
pubmed: 25743115
Science. 2008 Mar 28;319(5871):1753
pubmed: 18369116
Langmuir. 2011 May 17;27(10):5961-7
pubmed: 21486061
Philos Trans A Math Phys Eng Sci. 2010 May 28;368(1919):2369-93
pubmed: 20403833
Chemistry. 2016 Jul 11;22(29):10028-35
pubmed: 27273454
Langmuir. 2017 Oct 31;33(43):11956-11967
pubmed: 28991480
J Mol Model. 2014 Jun;20(6):2311
pubmed: 24906646
Phys Chem Chem Phys. 2016 Jul 27;18(30):20607-14
pubmed: 27412621
J Chem Phys. 2015 Sep 7;143(9):094506
pubmed: 26342376
Langmuir. 2020 Apr 7;36(13):3323-3335
pubmed: 32109063
Chemphyschem. 2012 Jun 4;13(8):2179-87
pubmed: 22378608
J Chem Phys. 2012 Jan 28;136(4):044523
pubmed: 22299907
Acc Chem Res. 2005 Aug;38(8):644-52
pubmed: 16104687
Annu Rev Chem Biomol Eng. 2011;2:237-57
pubmed: 22432618
J Phys Chem A. 2009 May 7;113(18):5463-9
pubmed: 19361183