Relationship Between Oxidative Stress Markers and Endothelin-1 Levels in Newborns of Different Gestational Ages.
cord blood
endothelin-1
glutathione
malondialdehyde
neonate
newborn
oxidative stress
Journal
Frontiers in pediatrics
ISSN: 2296-2360
Titre abrégé: Front Pediatr
Pays: Switzerland
ID NLM: 101615492
Informations de publication
Date de publication:
2020
2020
Historique:
received:
18
12
2019
accepted:
04
05
2020
entrez:
26
6
2020
pubmed:
26
6
2020
medline:
26
6
2020
Statut:
epublish
Résumé
Oxidative stress results from excessive reactive oxygen species formation and/or inadequate antioxidant defense. Premature and critically ill infants are especially susceptible due to an immature intrinsic antioxidant system that cannot fully compensate for a free radical load. Oxidative stress is also associated with endothelial dysfunction and alterations in Endothelin-1 (ET-1) signaling pathways. However, the effects of the complex interaction between oxidative stress and ET-1 in newborns are not well-understood. The objective of this pilot study was to determine the relationship between levels of common oxidative stress biomarkers [glutathione (GSH), malondialdehyde (MDA)] and ET-1 in newborns of different gestational ages. In a level IV NICU, 63 neonates were prospectively enrolled and divided into groups based on gestational age at birth: Early Preterm (24 0/7-30 6/7 weeks), Late Preterm (31 0/7-36 6/7 weeks), and Term (37 0/7-42 weeks). Umbilical cord (1.5 mL) and 24(±4) h of life (24 h) (1 mL) blood samples were collected for GSH, MDA, and ET-1 analyses. GSH, MDA, and ET-1 were determined using established methodology. Mean cord MDA levels for all age groups, Early Preterm (2.93 ± 0.08 pg/ml), Late Preterm (2.73 ± 0.15 pg/ml), and Term (2.92 ± 0.13 pg/ml), were significantly higher than those at 24 h of life (
Identifiants
pubmed: 32582590
doi: 10.3389/fped.2020.00279
pmc: PMC7280445
doi:
Types de publication
Journal Article
Langues
eng
Pagination
279Informations de copyright
Copyright © 2020 Stefanov, Briyal, Pais, Puppala and Gulati.
Références
J Immunol. 2011 Jun 1;186(11):6568-75
pubmed: 21531894
BBA Clin. 2014 Dec 08;3:65-9
pubmed: 26676080
Paediatr Int Child Health. 2016 May;36(2):134-40
pubmed: 25940692
Stem Cell Reports. 2015 May 12;4(5):886-98
pubmed: 25937369
Hypertension. 2005 Feb;45(2):283-7
pubmed: 15623539
Biol Neonate. 2005;88(3):228-36
pubmed: 16210845
Front Physiol. 2014 Oct 10;5:372
pubmed: 25346691
Oxid Med Cell Longev. 2013;2013:694014
pubmed: 23844277
J Pineal Res. 2009 Mar;46(2):128-39
pubmed: 19054296
Adv Neonatal Care. 2008 Oct;8(5):256-64
pubmed: 18827514
Biol Cell. 2002 Sep;94(4-5):251-65
pubmed: 12489694
J Neonatal Perinatal Med. 2016 May 19;9(2):145-52
pubmed: 27197927
Acta Histochem. 2015 May-Jun;117(4-5):486-91
pubmed: 25747735
Anal Biochem. 2017 May 1;524:13-30
pubmed: 27789233
Life Sci. 2012 Oct 15;91(13-14):723-8
pubmed: 22483692
Vascul Pharmacol. 2006 Nov;45(5):308-16
pubmed: 17049313
Arch Biochem Biophys. 1959 May;82(1):70-7
pubmed: 13650640
Pediatr Res. 2004 Dec;56(6):878-82
pubmed: 15470194
Best Pract Res Clin Obstet Gynaecol. 2011 Jun;25(3):287-99
pubmed: 21130690
Lancet. 2006 Jun 10;367(9526):1913-9
pubmed: 16765760
Eur J Med Chem. 2015 Jun 5;97:55-74
pubmed: 25942353
Curr Med Chem. 2007;14(3):339-51
pubmed: 17305536
J Pediatr. 2013 Oct;163(4):949-54
pubmed: 23759422
Anal Biochem. 1979 Jun;95(2):351-8
pubmed: 36810
Iran J Public Health. 2015 May;44(5):714-5
pubmed: 26284218
Oxid Med Cell Longev. 2014;2014:358375
pubmed: 25202436
Sante. 2009 Jan-Mar;19(1):15-9
pubmed: 19801346
Pediatr Int. 2013 Oct;55(5):604-7
pubmed: 23682641
Am J Hum Biol. 2015 Nov-Dec;27(6):822-31
pubmed: 25945813
Clin Biochem. 2007 Jun;40(9-10):688-91
pubmed: 17451665
Eur J Clin Nutr. 2014 Feb;68(2):215-22
pubmed: 24327121
PLoS One. 2016 May 26;11(5):e0155353
pubmed: 27228087
Redox Rep. 2008;13(1):11-6
pubmed: 18284846