Role of DRAM1 in mitophagy contributes to preeclampsia regulation in mice.
preeclampsia
oxidative stress
mitochondrial dysfunction
dna damage-regulated autophagy modulator 1
mitophagy
Journal
Molecular medicine reports
ISSN: 1791-3004
Titre abrégé: Mol Med Rep
Pays: Greece
ID NLM: 101475259
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
10
01
2019
accepted:
02
06
2020
pubmed:
26
6
2020
medline:
21
4
2021
entrez:
26
6
2020
Statut:
ppublish
Résumé
Preeclampsia (PE) is a complication during pregnancy that is diagnosed by a new onset of hypertension and proteinuria. Although the pathogenesis of PE is not fully understood, a growing body of evidence indicates that oxidative stress and mitochondrial dysfunction might contribute to the progression of PE. Therefore, the aim of the present study was to determine the role of mitophagy in mitochondrial dysfunction and oxidative stress in PE, and to evaluate the role of DNA damage‑regulated autophagy modulator 1 (DRAM1) in the development of PE. First, a mouse model of PE induced by hypoxia‑inducible factor 1α was established, and high levels of oxidative stress, apoptosis and mitochondrial dysfunction were found in the placentas of PE mice. Additionally, the placentas of PE mice exhibited decreased mitophagy and significantly decreased DRAM1 expression. To further explore the role of DRAM1 in mitophagy, DRAM1 was overexpressed in the placental tissues of PE mice, and this overexpression effectively improved the symptoms of PE mice and significantly reduced blood lipid and urine protein levels. DRAM1 overexpression also improved mitochondrial function and reduced oxidative stress in the placentas of PE mice. In addition, the overexpression of DRAM1 improved mitochondrial fusion and fission, and enhanced mitophagy. Altogether, these results indicated a key role for DRAM1 in mitophagy that contributed to the regulation of PE. To the best of the authors' knowledge, the present study provided the first evidence of a role for DRAM1 in PE, and offered novel insight into the pathophysiological mechanisms of PE.
Identifiants
pubmed: 32582984
doi: 10.3892/mmr.2020.11269
pmc: PMC7411365
doi:
Substances chimiques
DRAM-1 protein, mouse
0
Hypoxia-Inducible Factor 1, alpha Subunit
0
Lipids
0
Membrane Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1847-1858Références
Arch Med Res. 2014 Oct;45(7):519-24
pubmed: 25450587
Oncol Lett. 2018 Jun;15(6):9333-9338
pubmed: 29844830
Acta Obstet Gynecol Scand. 2012 Oct;91(10):1212-7
pubmed: 22524261
Mol Med Rep. 2016 Sep;14(3):2697-704
pubmed: 27484589
Biol Rev Camb Philos Soc. 2017 Aug;92(3):1459-1474
pubmed: 27455896
Syst Biol Reprod Med. 2014 Oct;60(5):263-73
pubmed: 25003840
Redox Biol. 2013 May 23;1:319-31
pubmed: 24024167
Mol Med Rep. 2017 Sep;16(3):3594-3599
pubmed: 28714012
PLoS One. 2013 May 17;8(5):e63245
pubmed: 23696801
Eur J Obstet Gynecol Reprod Biol. 2013 Oct;170(2):377-80
pubmed: 23953912
Trends Cell Biol. 2018 Nov;28(11):882-895
pubmed: 30115557
Neurobiol Dis. 2003 Aug;13(3):213-21
pubmed: 12901835
Ann Endocrinol (Paris). 2016 Jun;77(2):97-100
pubmed: 27130072
Mitochondrion. 2019 Nov;49:269-283
pubmed: 31228566
J Inflamm (Lond). 2010 Jan 28;7:6
pubmed: 20181046
J Biol Chem. 2013 Jan 11;288(2):915-26
pubmed: 23152496
Am J Transl Res. 2019 Jun 15;11(6):3620-3628
pubmed: 31312372
Int J Mol Sci. 2019 May 11;20(9):
pubmed: 31083536
Placenta. 2015 Feb;36(2):179-85
pubmed: 25486968
PLoS One. 2017 Mar 30;12(3):e0173711
pubmed: 28358847
Circulation. 2017 Nov 7;136(19):1824-1839
pubmed: 28904069
Pregnancy Hypertens. 2016 Oct;6(4):313-319
pubmed: 27939475
Chin Med J (Engl). 2019 Mar 20;132(6):671-679
pubmed: 30855348
Cell Stress. 2018 Mar 07;2(3):55-65
pubmed: 31225467
Cell Death Dis. 2018 Feb 20;9(3):298
pubmed: 29463805
ScientificWorldJournal. 2012;2012:243476
pubmed: 22593668
J Immunol. 2006 Nov 1;177(9):6480-8
pubmed: 17056580
J Exp Med. 2009 Nov 23;206(12):2809-22
pubmed: 19887397
Placenta. 2012 Feb;33(2):132-4
pubmed: 22189170
Am J Physiol Regul Integr Comp Physiol. 2019 Jul 1;317(1):R49-R58
pubmed: 30995083
J Cell Biol. 2009 Sep 21;186(6):805-16
pubmed: 19752021
Clin Biochem. 2002 Jul;35(5):393-7
pubmed: 12270770
Nat Protoc. 2006;1(3):1552-8
pubmed: 17406448
FASEB J. 2015 Dec;29(12):4766-71
pubmed: 26253366
Zhonghua Yi Xue Za Zhi. 2011 Sep 6;91(33):2343-7
pubmed: 22321750
J Obstet Gynaecol. 2005 May;25(4):347-51
pubmed: 16091314
Biomed Res Int. 2014;2014:150845
pubmed: 25013758
Biol Reprod. 2019 Aug 1;101(2):271-283
pubmed: 31175349
Zhonghua Yi Xue Za Zhi. 2015 Jan 6;95(1):26-9
pubmed: 25876804
Mol Cells. 2018 Jan 31;41(1):18-26
pubmed: 29370689
Reprod Sci. 2016 Oct;23(10):1422-33
pubmed: 27076444
Zhonghua Fu Chan Ke Za Zhi. 2012 Jun;47(6):412-7
pubmed: 22932105
Hypertension. 2015 Jun;65(6):1307-15
pubmed: 25847948
Sci Rep. 2016 Aug 30;6:32410
pubmed: 27573305
Free Radic Biol Med. 2019 Dec;145:284-299
pubmed: 31574345
Antioxid Redox Signal. 2011 May 15;14(10):1989-2001
pubmed: 21194379
Int J Mol Sci. 2018 May 17;19(5):
pubmed: 29772777
Mini Rev Med Chem. 2019;19(3):178-193
pubmed: 30324879
J Am Heart Assoc. 2017 Jun 27;6(6):
pubmed: 28655735
Eur J Obstet Gynecol Reprod Biol. 2006 Jun 1;126(2):197-200
pubmed: 16202503
Biomed Res Int. 2014;2014:693157
pubmed: 25302305
Nat Commun. 2016 Nov 22;7:13519
pubmed: 27874006
Ultrasound Obstet Gynecol. 2019 May;53(5):649-654
pubmed: 30887621
J Cell Physiol. 2019 Nov;234(11):19384-19392
pubmed: 31004368
Redox Biol. 2018 May;15:347-362
pubmed: 29306792
Oxid Med Cell Longev. 2018 Sep 5;2018:3420187
pubmed: 30254714
J Reprod Immunol. 2014 Mar;101-102:80-88
pubmed: 23969229
Sci Rep. 2019 Feb 26;9(1):2742
pubmed: 30808910
Placenta. 2018 Sep;69:153-161
pubmed: 29622278
Cancer Res. 2009 Sep 1;69(17):6924-31
pubmed: 19706754
J Obstet Gynaecol. 2019 Jul;39(5):633-638
pubmed: 31001993
Antioxid Redox Signal. 2005 Sep-Oct;7(9-10):1140-9
pubmed: 16115017
J Membr Biol. 1980 Sep 30;56(2):97-105
pubmed: 7003152