Developmental stages of zebrafish (Danio rerio) embryos and toxicological studies using foldscope microscope.


Journal

Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 13 03 2020
revised: 17 06 2020
accepted: 23 06 2020
pubmed: 26 6 2020
medline: 11 8 2021
entrez: 26 6 2020
Statut: ppublish

Résumé

Zebrafish (Danio rerio), is a well-established vertebrate animal model widely used in developmental biology and toxicological research. In the present study, foldscope is used as an innovative tool to study the developmental stages and toxicological analysis of the zebrafish embryos. Briefly, the developmental stages, such as zygote, cleavage, blastula, gastrula, segmentation, and pharyngula formation are observed and documented using simple foldscope. Toxicological parameters upon exposure to different concentration of ethanol extract of Curcuma longa and its lead compound, ar-turmerone along with rhodamine B (bio-coupler) on zebrafish embryos are analyzed upto 72 hr using foldscopes in live condition. The lethal endpoints, such as coagulation, lack of somite formation, non-detachment of tail, and lack of heartbeat are clearly monitored and documented using foldscope. Bio-evaluation of test compounds with the aid of foldscope confirms that the toxicity is directly proportional to the concentration. Our results conclude that, ethanol extract of C. longa, ar-turmerone and rhodamine B exposed embryos remains healthy up to 96, 48, and 24 µg concentrations, respectively. Embryos exposed to higher concentrations become coagulated, however normal physiological active movement of tail lashing and heartbeat are evident in lower concentration exposed embryos. Except coagulation, no other abnormalities are observed and interestingly, the hatching ability is not delayed, when compared with the control embryos. It is confirmed that the test compounds are not highly toxic to zebrafish embryos. Hence it can be used for further analysis, especially for studying the neural-regeneration and its neuronal development in zebrafish embryos.

Identifiants

pubmed: 32584484
doi: 10.1002/cbin.11412
doi:

Substances chimiques

Plant Extracts 0
Rhodamines 0
rhodamine B K7G5SCF8IL

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1968-1980

Subventions

Organisme : Indian Council of Medical Research
ID : 2017-0898/SCRR-BMS
Organisme : Department of Biotechnology, Ministry of Science and Technology
ID : BT/IN/Indo-US/Foldscopes/39/2015

Informations de copyright

© 2020 International Federation for Cell Biology.

Références

Alafiatayo, A. A., Song-Lai, K., Syahida, A., Mahmood, M., & Shaharuddin, N. A. (2019). Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evidence-Based Complementary and Alternative Medicine, 2019, 1-10. https://doi.org/10.1155/2019/3807207
Arora, R. B., Basu, N., Kapoor, M. K., & Jain, A. P. (1971). Anti-inflammatory studies on Curcuma longa L. (turmeric). Indian Journal of Medical Research, 59, 1289-1291.
Banerjee, S. (2018). Foldscope the frugal innovation and its application in food microscopy-A review. Acta Scientific Nutritional Health, 2, 53-54.
Barrionuevo, W. R., & Burggren, W. W. (1999). O-2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O-2. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 276, R505-R513.
Brand, M., Granato, M., & Nüsslein-Volhard, C. (2002). Keeping and raising zebrafish. Zebrafish: A practical approach (p. 303). New York: University Press.
Chan, J. Y. W., Zhou, H., Kwan, Y. W., Chan, S. W., Radis-Baptista, G., & Lee, S. M. Y. (2017). Evaluation in zebrafish model of the toxicity of rhodamine B-conjugated crotamine, a peptide potentially useful for diagnostics and therapeutics. Journal of Biochemical and Molecular Toxicology, 31, e21964. https://doi.org/10.1002/jbt.21964
Chikkala, H. L., & Rachel, V. (2019). Cervical cancer & it's diagnosis by foldscope. Foldscope and its applications (pp. 82-86). New Dehi: National Press Associates.
Cooper, M. S., D'Amico, L. A., & Henry, C. A. (1999). Analyzing morphogenetic cell behavior in vitally stained zebrafish embryos. Methods in Molecular Biology, 122, 185-204. https://doi.org/10.1385/1-59259-722-x:185
Cybulski, J. S., Clements, J., & Prakash, M. (2014). Foldscope: Origami-based paper microscope. PLoS One, 9, e98781. https://doi.org/10.1371/journal.pone.0098781
Demaine, E. D., & O'Rourke, J. (2007). Geometric folding algorithms: Linkages, Origami, Polyhedra (p. 472). Cambridge, MA: Cambridge Univ Press.
Dooley, K., & Zon, L. I. (2000). Zebrafish: A model system for the study of human disease. Current Opinion in Genetics and Development, 10, 252-256. https://doi.org/10.1016/s0959-437x(00)00074-5
Dorszewska, J., Prendecki, M., Oczkowska, A., Dezor, M., & Kozubski, W. (2016). Molecular basis of familial and sporadic alzheimer's disease. Current Alzheimer Research, 13, 952-963. https://doi.org/10.2174/1567205013666160314150501
Ebrahimie, E., Fruzangohar, M., Moussavi Nik, S. H., & Newman, M. (2017). Gene ontology-based analysis of zebrafish omics data using the web tool comparative gene ontology. Zebrafish, 14, 492-494. https://doi.org/10.1089/zeb.2016.1290
Fraysse, B., Mons, R., & Garric, J. (2006). Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicology and Environmental Safety, 63, 253-267. https://doi.org/10.1016/j.ecoenv.2004.10.015
Hisaoka, K. K., & Battle, H. I. (1958). The normal developmental stages of the zebrafish, Brachydanio rerio (Hamilton-Buchanan). Journal of Morphology, 102, 311-27.
Hucklenbroich, J., Klein, R., Neumaier, B., Graf, R., Fink, G. R., Schroeter, M., & Rueger, M. A. (2014). Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Research & Therapy, 5, 100. https://doi.org/10.1186/scrt500
Jadhav, V. D., Bokefode, J. D., Ghodake, A. K., Borade, O. N., & Gidvir, A. S. (2018). Fold scope: A low-cost magnification device and its applications in various fields. In P. Pawar, B. Ronge, R. Balasubramaniam, A. Vibhute & S. Apte (Eds.), Techno-societal. Cham: Springer. https://doi.org/10.1007/978-3-030-16848
Kimmel, C. B. (1989). Genetics and early development of zebrafish. Trends in Genetics, 5, 283-288. https://doi.org/10.1016/0168-9525(89)90103-0
Kimmel, C. B., Ballalrd, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203, 253-310.
Laale, H. W. (1977). Biology and use of zebrafish Brachydanio rerio in fisheries research. A literature review. Journal of Fish Biology, 10, 121-173. https://doi.org/10.1111/j.1095-8649.1977.tb04049.x
Lammer, E., Carr, G. J., Wendler, K., Rawlings, J. M., Belanger, S. E., & Braunbeck, T. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 196-209. https://doi.org/10.1016/j.cbpc.2008.11.006
Lieschke, G. J., & Currie, P. D. (2017). Animal models of human disease: Zebrafish swim into view. Nature Reviews Genetics, 8, 353-37. https://doi.org/10.1038/nrg2091
Lutomski, J., Kedzia, B., & Debska, W. (1974). Effect of the alcohol extract and active ingredients from Curcuma longa [L.] on bacteria and fungi. Planta Medica, 2, 9-19. https://doi.org/10.1055/s-0028-1097963
McArthur, M., & Lang, R. (2012). Folding Paper: The infinite possibilities of Origami (p. 96). Washington, DC: International Arts & Artists.
Myer, J. H. (1969). Optigami-A tool for optical system design. Applied Optics, 8, 260.
Nagel, R. (2002). Dar T: the embryo test with the zebrafish Danio rerio-A general model in ecotoxicology and toxicology. ALTEX: Alternativen zu Tierexperimenten, 19, 38-48.
Newman, M., Ebrahimie, E., & Lardelli, M. (2014). Using the zebrafish model for alzheimer's disease research. Frontiers in Genetics, 5, 189. https://doi.org/10.3389/fgene.2014.00189
Orellana-Paucar, A. M., Afrikanova, T., Thomas, J., Aibuldinov, Y. K., Dehaen, W., De Witte, P. A., & Esguerra, C. V. (2013). Insights from zebrafish and mouse models on the activity and safety of ar turmerone as a potential drug candidate for the treatment of epilepsy. PLoS One, 8, e81634. https://doi.org/10.1371/journal.pone.0081634
Palanivelrajan, M., Manoj Dhanraj, K., Sreekumar, C., & Senthilkumar, K. (2019). Foldscope as a tool to screen parasitic infections in wild animals of Tamil Nadu. Foldscope and its applications (pp. 128-134). New Delhi: National Press Associates.
Rosemberg, D. B., Braga, M. M., Rico, E. P., Loss, C. M., Córdova, S. D., Mussulini, B. H. M., & Calcagnotto, M. E. (2012). Behavioral effects of taurine pretreatment in Zebrafish acutely exposed to ethanol. Neuropharmacology, 63, 613-623. https://doi.org/10.1016/j.neuropharm.2012.05.009
Rosenstrom, J., & Sommer, A. C. (2016). Exploring the challenges of reverse innovation: A case study of a smart plant wall. Master of Science Thesis, Department of technology management and Economics. Goteborg, Sverige: Chalmers University of Technology.
Sabarinathan, K. G., Gomathy, M., Arun Kumar, D., & Kannan, R. (2019). Foldscope: An innovative tool to study agriculturally important microbes. Foldscope and its applications (pp. 206-211). New Delhi: National Press Associates.
Sambaiah, K., Ratankumar, S., Kamanna, V. S., Satyranayana, M. N. E., & Rao, M. V. L. (1982). Influence of turmeric and curcumin on growth, blood constituents and serum enzymes in rats. Indian Journal of Food Science and Tehcnology, 19, 187-190.
Schmid, B., & Haass, C. (2013). Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. Journal of Neurochemistry, 127, 461-470. https://doi.org/10.1111/jnc.12460
Shekhaliya, K. D., Tank, J. G., & Pandya, R. V. (2019). Foldscope: A primary tool for detection of bioactive compounds in plant cells. Foldscope and its applications (pp. 105-116). New Delhi: National Press Associates.
Solnica-Krezel, L., Stemple, D. L., & Driever, W. (1995). Transparent things: Cell fates and cell movements during early embryogenesis of zebrafish. BioEssays, 17, 931-939. https://doi.org/10.1002/bies.950171106
Tran, S., & Gerlai, R. (2015). Thirty-second net stressor task in adult zebrafish. Bio Protoc, 5, e1413. https://doi.org/10.21769/bioprotoc.1413
Westerfield, M. (2000). The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio) (4th ed.). Eugene: University of Oregon Press.

Auteurs

Beryl Vedha Yesudhason (BV)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Johnson Retnaraj Samuel Selvan Christyraj (JRS)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Mijithra Ganesan (M)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Karthikeyan Subbiahanadar Chelladurai (K)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Saravanakumar Venkatachalam (S)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Arun Ramalingam (A)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Johnson Benedict (J)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Vennila Devi Paulraj (VD)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Jackson Durairaj Selvan Christyraj (JD)

Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH