Plasma IP-10 and IL-6 are linked to Child-Pugh B cirrhosis in patients with advanced HCV-related cirrhosis: a cross-sectional study.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 06 2020
25 06 2020
Historique:
received:
02
01
2020
accepted:
03
06
2020
entrez:
27
6
2020
pubmed:
27
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
We aimed to evaluate the association of plasma biomarkers linked to inflammation (bacterial translocation, inflammatory response, and endothelial dysfunction), coagulopathy, and angiogenesis with the severity of liver cirrhosis (assessed by the Child-Pugh-Turcotte score, CTP) and Child-Pugh B cirrhosis (CTP 7-9) in patients with advanced hepatitis C virus (HCV)-related cirrhosis. We carried out a cross-sectional study in 97 patients with advanced HCV-related cirrhosis (32 HCV-monoinfected and 65 HIV/HCV-coinfected). Plasma biomarkers were measured by ProcartaPlex multiplex immunoassays. The outcome variable was the CTP score and the Child-Pugh B cirrhosis (CTP 7-9). HIV/HCV-coinfected patients and HCV-monoinfected patients with advanced HCV-related cirrhosis had near-equivalent values of plasma biomarkers. Higher values of plasma biomarkers linked to an inflammatory response (IP-10, IL-8, IL-6, and OPG), endothelial dysfunction (sVCAM-1 and sICAM-1), and coagulopathy (D-dimer) were related to higher CTP values. The most significant biomarkers to detect the presence of Child-Pugh B cirrhosis (CTP 7-9) were IP-10 (p-value= 0.008) and IL-6 (p-value=0.002). The AUC-ROC values of IP-10, IL-6, and both biomarkers combined (IP-10+IL-6) were 0.78, 0.88, and 0.96, respectively. In conclusion, HIV infection does not appear to have a significant impact on the analyzed plasma biomarkers in patients with advanced HCV-related cirrhosis. However, plasma biomarkers linked to inflammation (inflammatory response and endothelial dysfunction) were related to the severity of liver cirrhosis (CTP score), mainly IP-10 and IL-6, which discriminated patients with Child-Pugh B concerning Child-Pugh A.
Identifiants
pubmed: 32587340
doi: 10.1038/s41598-020-67159-3
pii: 10.1038/s41598-020-67159-3
pmc: PMC7316790
doi:
Substances chimiques
Biomarkers
0
CXCL10 protein, human
0
Chemokine CXCL10
0
IL6 protein, human
0
Interleukin-6
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10384Références
WHO. Global Hepatitis Report. World Health Organization (2017).
Westbrook, R. H. & Dusheiko, G. Natural history of hepatitis C. Journal of hepatology 61, S58–68, https://doi.org/10.1016/j.jhep.2014.07.012 (2014).
doi: 10.1016/j.jhep.2014.07.012
pubmed: 25443346
Naggie, S. Hepatitis C Virus, Inflammation, and Cellular Aging: Turning Back Time. Top Antivir Med 25, 3–6 (2017).
pubmed: 28402927
pmcid: 5677037
Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 16, 509–523, https://doi.org/10.1038/nri.2016.69 (2016).
doi: 10.1038/nri.2016.69
pubmed: 27374637
Irvine, K. M., Ratnasekera, I., Powell, E. E. & Hume, D. A. Causes and Consequences of Innate Immune Dysfunction in Cirrhosis. Frontiers in immunology 10, 293, https://doi.org/10.3389/fimmu.2019.00293 (2019).
doi: 10.3389/fimmu.2019.00293
pubmed: 30873165
pmcid: 6401613
Albillos, A., Lario, M. & Alvarez-Mon, M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. Journal of hepatology 61, 1385–1396, https://doi.org/10.1016/j.jhep.2014.08.010 (2014).
doi: 10.1016/j.jhep.2014.08.010
pubmed: 25135860
Gonzalez-Reimers, E. et al. Thrombin activation and liver inflammation in advanced hepatitis C virus infection. World journal of gastroenterology 22, 4427–4437, https://doi.org/10.3748/wjg.v22.i18.4427 (2016).
doi: 10.3748/wjg.v22.i18.4427
pubmed: 27182154
pmcid: 4858626
Koziel, M. J. & Peters, M. G. Viral hepatitis in HIV infection. The New England journal of medicine 356, 1445–1454, https://doi.org/10.1056/NEJMra065142 (2007).
doi: 10.1056/NEJMra065142
pubmed: 17409326
pmcid: 4144044
López-Diéguez, M. et al. The natural history of liver cirrhosis in HIV-hepatitis C virus-coinfected patients. AIDS 25, 899–904, https://doi.org/10.1097/QAD.0b013e3283454174 (2011).
doi: 10.1097/QAD.0b013e3283454174
pubmed: 21330908
Macias, J. et al. Fast fibrosis progression between repeated liver biopsies in patients coinfected with human immunodeficiency virus/hepatitis C virus. Hepatology 50, 1056–1063, https://doi.org/10.1002/hep.23136 (2009).
doi: 10.1002/hep.23136
pubmed: 19670415
Del Campo, J. A., Gallego, P. & Grande, L. Role of inflammatory response in liver diseases: Therapeutic strategies. World journal of hepatology 10, 1–7, https://doi.org/10.4254/wjh.v10.i1.1 (2018).
doi: 10.4254/wjh.v10.i1.1
pubmed: 29399273
pmcid: 5787673
Hunt, P. W., Lee, S. A. & Siedner, M. J. Immunologic Biomarkers, Morbidity, and Mortality in Treated HIV Infection. The Journal of infectious diseases 214(Suppl 2), S44–50, https://doi.org/10.1093/infdis/jiw275 (2016).
doi: 10.1093/infdis/jiw275
pubmed: 27625430
pmcid: 5021241
Hunt, P. W. HIV and inflammation: mechanisms and consequences. Curr HIV/AIDS Rep 9, 139–147, https://doi.org/10.1007/s11904-012-0118-8 (2012).
doi: 10.1007/s11904-012-0118-8
pubmed: 22528766
Schwabl, P. et al. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease. Alimentary pharmacology & therapeutics 45, 139–149, https://doi.org/10.1111/apt.13844 (2017).
doi: 10.1111/apt.13844
Kostadinova, L. et al. Soluble Markers of Immune Activation Differentially Normalize and Selectively Associate with Improvement in AST, ALT, Albumin, and Transient Elastography During IFN-Free HCV Therapy. Pathog Immun 3, 149–163, https://doi.org/10.20411/pai.v3i1.242 (2018).
doi: 10.20411/pai.v3i1.242
pubmed: 30370392
pmcid: 6201254
Fernandes, F. F. et al. Effectiveness of direct-acting agents for hepatitis C and liver stiffness changing after sustained virological response. J Gastroenterol Hepatol, https://doi.org/10.1111/jgh.14707 (2019).
Macias, J. et al. Similar recovery of liver function after response to all-oral HCV therapy in patients with cirrhosis with and without HIV coinfection. Journal of viral hepatitis 26, 16–24, https://doi.org/10.1111/jvh.12990 (2019).
doi: 10.1111/jvh.12990
pubmed: 30141222
Lopez-Cortes, L. F. et al. Eradication of Hepatitis C Virus (HCV) Reduces Immune Activation, Microbial Translocation, and the HIV DNA Level in HIV/HCV-Coinfected Patients. The Journal of infectious diseases 218, 624–632, https://doi.org/10.1093/infdis/jiy136 (2018).
doi: 10.1093/infdis/jiy136
pubmed: 29986086
Laursen, T. L. et al. Time-dependent improvement of liver inflammation, fibrosis, and metabolic liver function after successful direct-acting antiviral therapy of chronic hepatitis C. Journal of viral hepatitis, https://doi.org/10.1111/jvh.13204 (2019).
Mandorfer, M. et al. Changes in Hepatic Venous Pressure Gradient Predict Hepatic Decompensation in Patients Who Achieved Sustained Virologic Response to Interferon-Free Therapy. Hepatology 71, 1023–1036, https://doi.org/10.1002/hep.30885 (2020).
doi: 10.1002/hep.30885
pubmed: 31365764
Conti, F. et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J Hepatol 65, 727–733, https://doi.org/10.1016/j.jhep.2016.06.015 (2016).
doi: 10.1016/j.jhep.2016.06.015
pubmed: 27349488
Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet, https://doi.org/10.1016/S0140-6736(18)30010-2 (2018).
Sulkowski, M. S. HCV-HIV coinfected patients: no longer a ‘special’ population? Liver international: official journal of the International Association for the Study of the Liver 36(Suppl 1), 43–46, https://doi.org/10.1111/liv.13021 (2016).
doi: 10.1111/liv.13021
Medrano, L. M. et al. Elevated liver stiffness is linked to increased biomarkers of inflammation and immune activation in HIV/hepatitis C virus-coinfected patients. AIDS 32, 1095–1105, https://doi.org/10.1097/QAD.0000000000001787 (2018).
doi: 10.1097/QAD.0000000000001787
pubmed: 29438197
Durand, F. & Valla, D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. Journal of hepatology 42(Suppl), S100–107, https://doi.org/10.1016/j.jhep.2004.11.015 (2005).
doi: 10.1016/j.jhep.2004.11.015
pubmed: 15777564
Breen, E. J., Tan, W. & Khan, A. The Statistical Value of Raw Fluorescence Signal in Luminex xMAP Based Multiplex Immunoassays. Sci Rep 6, 26996, https://doi.org/10.1038/srep26996 (2016).
doi: 10.1038/srep26996
pubmed: 27243383
pmcid: 4886638
Breen, E. J., Polaskova, V. & Khan, A. Bead-based multiplex immuno-assays for cytokines, chemokines, growth factors and other analytes: median fluorescence intensities versus their derived absolute concentration values for statistical analysis. Cytokine 71, 188–198, https://doi.org/10.1016/j.cyto.2014.10.030 (2015).
doi: 10.1016/j.cyto.2014.10.030
pubmed: 25461398
Lo, R. V. 3rd et al. Hepatic decompensation in antiretroviral-treated patients co-infected with HIV and hepatitis C virus compared with hepatitis C virus-monoinfected patients: a cohort study. Annals of internal medicine 160, 369–379, https://doi.org/10.7326/M13-1829 (2014).
doi: 10.7326/M13-1829
Abutaleb, A. & Sherman, K. E. A changing paradigm: management and treatment of the HCV/HIV-co-infected patient. Hepatol Int 12, 500–509, https://doi.org/10.1007/s12072-018-9896-4 (2018).
doi: 10.1007/s12072-018-9896-4
pubmed: 30238230
pmcid: 6471674
Younas, M., Psomas, C., Reynes, J. & Corbeau, P. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy. HIV medicine 17, 89–105, https://doi.org/10.1111/hiv.12310 (2016).
doi: 10.1111/hiv.12310
pubmed: 26452565
Akcam, F. Z., Tigli, A., Kaya, O., Ciris, M. & Vural, H. Cytokine levels and histopathology in chronic hepatitis B and chronic hepatitis C. J Interferon Cytokine Res 32, 570–574, https://doi.org/10.1089/jir.2012.0048 (2012).
doi: 10.1089/jir.2012.0048
pubmed: 23067363
Lagathu, C. et al. Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. AIDS 31(Suppl 2), S105–S119, https://doi.org/10.1097/QAD.0000000000001441 (2017).
doi: 10.1097/QAD.0000000000001441
pubmed: 28471941
Marquez, M., Fernandez Gutierrez del Alamo, C. & Giron-Gonzalez, J. A. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity. World journal of gastroenterology 22, 1433–1448, https://doi.org/10.3748/wjg.v22.i4.1433 (2016).
doi: 10.3748/wjg.v22.i4.1433
pubmed: 26819512
pmcid: 4721978
Lin, W., Weinberg, E. M. & Chung, R. T. Pathogenesis of accelerated fibrosis in HIV/HCV coinfection. The Journal of infectious diseases 207(Suppl 1), S13–18, https://doi.org/10.1093/infdis/jis926 (2013).
doi: 10.1093/infdis/jis926
pubmed: 23390300
pmcid: 3611768
Leeansyah, E., Malone, D. F., Anthony, D. D. & Sandberg, J. K. Soluble biomarkers of HIV transmission, disease progression and comorbidities. Current opinion in HIV and AIDS 8, 117–124, https://doi.org/10.1097/COH.0b013e32835c7134 (2013).
doi: 10.1097/COH.0b013e32835c7134
pubmed: 23274365
Sherman, K. E. Advanced liver disease: what every hepatitis C virus treater should know. Top Antivir Med 19, 121–125 (2011).
pubmed: 21946390
Mandorfer, M. et al. in The Internatinal Liver Congress 2019 Vol. 70 (ed EASL) e625-e853 (Journal of Hepatology, Vienna, 2019).
Ferrari, S. M. et al. Immunomodulation of CXCL10 Secretion by Hepatitis C Virus: Could CXCL10 Be a Prognostic Marker of Chronic Hepatitis C? J Immunol Res 2019, 5878960, https://doi.org/10.1155/2019/5878960 (2019).
doi: 10.1155/2019/5878960
pubmed: 31485460
pmcid: 6702819
Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. & Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. Journal of hepatology 63, 1272–1284, https://doi.org/10.1016/j.jhep.2015.07.004 (2015).
doi: 10.1016/j.jhep.2015.07.004
pubmed: 26192220