Superior Mechanical Performance of Inductively Sintered Al/SiC Nanocomposites Processed by Novel Milling Route.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Jun 2020
25 Jun 2020
Historique:
received:
10
02
2020
accepted:
02
06
2020
entrez:
27
6
2020
pubmed:
27
6
2020
medline:
27
6
2020
Statut:
epublish
Résumé
This paper explores new routes for flake powder metallurgy, with the aim of designing an effective route for fabricating metal matrix nanocomposites, combining high strength and good ductility. A new route that uses three speeds, instead of the two speeds characterizing the shift-speed ball milling (SSBM) route, has been suggested and implemented. The mechanisms of these routes were illustrated based on the intensity of ball-powder-ball collisions and the morphology evolution. The ball milled powder were characterized using filed emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Energy dispersive spectroscopy (EDS) to investigate the morphology evolution of the composites powder and the homogenous distribution of the SiC nanoparticles within the Al matrix. The reinforcing adequacy and interfacial bonding of 2 wt.% SiC nanoparticles in an inductively sintered composite has been investigated. Mechanical testing of the produced bulk composites resulted in achieving superior mechanical properties, characterized by 92% higher hardness, 180% higher yield strength, 101% higher ultimate strength, and 0% loss in uniform elongation, compared with those of regular SSBM. This is attributed to the homogeneous dispersion of the reinforcement into the Al matrix.
Identifiants
pubmed: 32587361
doi: 10.1038/s41598-020-67198-w
pii: 10.1038/s41598-020-67198-w
pmc: PMC7316737
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
10368Références
Selvakumar, N., Gnanasundarajayaraja, B. & Rajeshkumar, P. Enhancing the Properties of Al–WC Nanocomposites Using Liquid Metallurgy. Exp. Tech. 40, 129–135, https://doi.org/10.1007/s40799-016-0015-y (2016).
doi: 10.1007/s40799-016-0015-y
Hashim, J., Looney, L. & Hashmi, M. S. J. Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123, 251–257, https://doi.org/10.1016/s0924-0136(02)00098-5 (2002).
doi: 10.1016/s0924-0136(02)00098-5
Thandalam, S. K., Ramanathan, S. & Sundarrajan, S. Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO
doi: 10.1016/j.jmrt.2015.03.003
Tjong, S. C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Engin. Rep. 74, 281–350, https://doi.org/10.1016/j.mser.2013.08.001 (2013).
doi: 10.1016/j.mser.2013.08.001
Lu, L., Lai, M. O. & Ng, C. W. Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying. Mater. Sci. Eng., A 252, 203–211, https://doi.org/10.1016/S0921-5093(98)00676-5 (1998).
doi: 10.1016/S0921-5093(98)00676-5
Lütjering, G. & Williams, J. C. In Titanium Engineering Materials and Processes Ch. 9, 367–382 (Springer Berlin Heidelberg, 2007).
Miller, M. K., Parish, C. M. & Li, Q. Advanced oxide dispersion strengthened and nanostructured ferritic alloys. Mater Sci Tech 29, 1174–1178, https://doi.org/10.1179/1743284713Y.0000000207 (2013).
doi: 10.1179/1743284713Y.0000000207
Akbari, M. K., Rajabi, S., Shirvanimoghaddam, K. & Baharvandi, H. R. Wear and friction behavior of nanosized TiB
doi: 10.1177/0021998314568327
Almotairy, S. M., Boostani, A. F., Hassani, M., Wei, D. & Jiang, Z. Y. Mechanical Properties of Aluminium Metal Matrix Nanocomposites Manufactured by Assisted-Flake Powder Thixoforming Process. Metals and Materials International, https://doi.org/10.1007/s12540-019-00488-9 (2019).
Kaczmar, J. W., Pietrzak, K. & Włosiński, W. The production and application of metal matrix composite materials. J. Mater. Process. Technol 106, 58–67, https://doi.org/10.1016/s0924-0136(00)00639-7 (2000).
doi: 10.1016/s0924-0136(00)00639-7
Wang, Z., Song, M., Sun, C., Xiao, D. & He, Y. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater. Sci. Eng., A 527, 6537–6542 (2010).
doi: 10.1016/j.msea.2010.07.017
Prasad, S. V. & Asthana, R. Aluminum Metal–Matrix Composites for Automotive Applications: Tribological Considerations. Tribol Lett 17, 445–453, https://doi.org/10.1023/B:TRIL.0000044492.91991.f3 (2004).
doi: 10.1023/B:TRIL.0000044492.91991.f3
Grácio, J. J. et al. Mechanical Behavior of Al-SiC Nanocomposites Produced by Ball Milling and Spark Plasma Sintering. Metall. Mater. Trans. A 44, 5259–5269, https://doi.org/10.1007/s11661-013-1874-9 (2013).
doi: 10.1007/s11661-013-1874-9
Almotairy, S. M., Boostani, A. F., Hassani, M., Wei, D. & Jiang, Z. Y. Effect of hot isostatic pressing on the mechanical properties of aluminium metal matrix nanocomposites produced by dual speed ball milling. J. Mater. Res. Technol 9, 1151–1161, https://doi.org/10.1016/j.jmrt.2019.11.043 (2020).
doi: 10.1016/j.jmrt.2019.11.043
Vanarotti, M., Shrishail, P., Sridhar, B. R., Venkateswarlu, K. & Kori, S. A. In Appl. Mech. Mater. Vol. 446–447 93-97 (2014).
Mousavian, R. T., Khosroshahi, R. A., Yazdani, S., Brabazon, D. & Boostani, A. F. Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles. Mater. Des 89, 58–70, https://doi.org/10.1016/j.matdes.2015.09.130 (2016).
doi: 10.1016/j.matdes.2015.09.130
Mazahery, A. & Shabani, M. O. Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: Experimental and novel modeling evaluation. Powder Tech 217, 558–565, https://doi.org/10.1016/j.powtec.2011.11.020 (2012).
doi: 10.1016/j.powtec.2011.11.020
Fogagnolo, J. B., Ruiz-Navas, E. M., Robert, M. H. & Torralba, J. M. The effects of mechanical alloying on the compressibility of aluminium matrix composite powder. Mater. Sci. Eng., A 355, 50–55, https://doi.org/10.1016/s0921-5093(03)00057-1 (2003).
doi: 10.1016/s0921-5093(03)00057-1
Tjong, S. C. Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties. Adv. Eng. Mater. 9, 639–652, https://doi.org/10.1002/adem.200700106 (2007).
doi: 10.1002/adem.200700106
Ahamed, H. & Senthilkumar, V. Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. J. Alloys Compd. 505, 772–782, https://doi.org/10.1016/j.jallcom.2010.06.139 (2010).
doi: 10.1016/j.jallcom.2010.06.139
Schmidt, A., Siebeck, S., Götze, U., Wagner, G. & Nestler, D. Particle-Reinforced Aluminum Matrix Composites (AMCs)—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast. Metals 8, 143, https://doi.org/10.3390/met8020143 (2018).
doi: 10.3390/met8020143
Hashim, J., Looney, L. & Hashmi, M. S. J. Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol 92-93, 1–7, https://doi.org/10.1016/s0924-0136(99)00118-1 (1999).
doi: 10.1016/s0924-0136(99)00118-1
Khan, A. S., Farrokh, B. & Takacs, L. Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater. Sci. Eng., A 489, 77–84, https://doi.org/10.1016/j.msea.2008.01.045 (2008).
doi: 10.1016/j.msea.2008.01.045
Naher, S., Brabazon, D. & Looney, L. Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J. Mater. Process. Technol. 166, 430–439, https://doi.org/10.1016/j.jmatprotec.2004.09.043 (2005).
doi: 10.1016/j.jmatprotec.2004.09.043
Singh, L. K., Bhadauria, A., Jana, S. & Laha, T. Effect of Sintering Temperature and Heating Rate on Crystallite Size, Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering. Acta Metall. Sin. 31, 1019–1030, https://doi.org/10.1007/s40195-018-0795-4 (2018).
doi: 10.1007/s40195-018-0795-4
Li, P., Chen, L., Cao, B. & Shi, K. Hierarchical microstructure architecture: A roadmap towards strengthening and toughening reduced graphene oxide/2024Al matrix composites synthesized by flake powder thixoforming. J. Alloys Compd. 823, 153815, https://doi.org/10.1016/j.jallcom.2020.153815 (2020).
doi: 10.1016/j.jallcom.2020.153815
Xu, Z. et al. Effect of Sintering Time on the Densification, Microstructure, Weight Loss and Tensile Properties of a Powder Metallurgical Fe-Mn-Si Alloy. Metals 7, https://doi.org/10.3390/met7030081 (2017).
Carvalho, O., Buciumeanu, M., Soares, D., Silva, F. S. & Miranda, G. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite. Journal of Materials Engineering and Performance 24, 2535–2545, https://doi.org/10.1007/s11665-015-1510-5 (2015).
doi: 10.1007/s11665-015-1510-5
Xu, R. et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A Appl Sci Manuf 96, 57–66, https://doi.org/10.1016/j.compositesa.2017.02.017 (2017).
doi: 10.1016/j.compositesa.2017.02.017
Tan, M. J. & Zhang, X. Powder metal matrix composites: selection and processing. Mater. Sci. Eng., A 244, 80–85, https://doi.org/10.1016/s0921-5093(97)00829-0 (1998).
doi: 10.1016/s0921-5093(97)00829-0
Nishida, Y. Introduction to Metal Matrix Composites: Fabrication and Recycling. (Springer, 2013).
Sabirov, I., Kolednik, O., Valiev, R. Z. & Pippan, R. Equal channel angular pressing of metal matrix composites: Effect on particle distribution and fracture toughness. Acta Mater. 53, 4919–4930, https://doi.org/10.1016/j.actamat.2005.07.010 (2005).
doi: 10.1016/j.actamat.2005.07.010
Kai, X. Z. et al. A model for volume fraction and/or particle size selection in metal matrix composites. Mater. Sci. Eng., A 530, 574–579, https://doi.org/10.1016/j.msea.2011.10.022 (2011).
doi: 10.1016/j.msea.2011.10.022
Lee, I. S., Hsu, C. J., Chen, C. F., Ho, N. J. & Kao, P. W. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Compos. Sci. Technol 71, 693–698, https://doi.org/10.1016/j.compscitech.2011.01.013 (2011).
doi: 10.1016/j.compscitech.2011.01.013
Kai, X. Z. et al. Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy. Mater. Sci. Eng., A 587, 46–53, https://doi.org/10.1016/j.msea.2013.08.042 (2013).
doi: 10.1016/j.msea.2013.08.042
Morsi, K. & Esawi, A. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42, 4954–4959, https://doi.org/10.1007/s10853-006-0699-y (2007).
doi: 10.1007/s10853-006-0699-y
Hesabi, Z. R., Hafizpour, H. R. & Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng., A 454–455, 89–98, https://doi.org/10.1016/j.msea.2006.11.129 (2007).
doi: 10.1016/j.msea.2006.11.129
Jiang, L., Li, Z., Fan, G. & Zhang, D. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scr. Mater 65, 412–415, https://doi.org/10.1016/j.scriptamat.2011.05.022 (2011).
doi: 10.1016/j.scriptamat.2011.05.022
Jiang, L., Li, Z., Fan, G., Cao, L. & Zhang, D. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 1993–1998, https://doi.org/10.1016/j.carbon.2011.12.057 (2012).
doi: 10.1016/j.carbon.2011.12.057
Kai, X. et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scr. Mater 68, 555–558, https://doi.org/10.1016/j.scriptamat.2012.11.024 (2013).
doi: 10.1016/j.scriptamat.2012.11.024
Fan, G., Xu, R., Tan, Z., Zhang, D. & Li, Z. Development of Flake Powder Metallurgy in Fabricating Metal Matrix Composites: A Review. Acta Metall. Sin. 27, 806–815, https://doi.org/10.1007/s40195-014-0148-x (2014).
doi: 10.1007/s40195-014-0148-x
Wei, H. et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr. Mater 75, 30–33, https://doi.org/10.1016/j.scriptamat.2013.11.014 (2014).
doi: 10.1016/j.scriptamat.2013.11.014
Varol, T. & Canakci, A. The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. J. Alloys Compd. 649, 1066–1074, https://doi.org/10.1016/j.jallcom.2015.07.008 (2015).
doi: 10.1016/j.jallcom.2015.07.008
Rikhtegar, F., Shabestari, S. G. & Saghafian, H. The homogenizing of carbon nanotube dispersion in aluminium matrix nanocomposite using flake powder metallurgy and ball milling methods. Powder Tech 280, 26–34, https://doi.org/10.1016/j.powtec.2015.04.047 (2015).
doi: 10.1016/j.powtec.2015.04.047
Luan, B.-F. et al. Hot deformation and processing maps of Al2O3/Al composites fabricated by flake powder metallurgy. Trans Nonferrous Metals Soc China 25, 1056–1063, https://doi.org/10.1016/S1003-6326(15)63698-6 (2015).
doi: 10.1016/S1003-6326(15)63698-6
He, W.-J. et al. Deformation behaviors and processing maps of CNTs/Al alloy composite fabricated by flake powder metallurgy. Trans Nonferrous Metals Soc China 25, 3578–3584, https://doi.org/10.1016/S1003-6326(15)63997-8 (2015).
doi: 10.1016/S1003-6326(15)63997-8
Canakci, A., Varol, T. & Erdemir, F. The Effect of Flake Powder Metallurgy on the Microstructure and Densification Behavior of B4C Nanoparticle-Reinforced Al–Cu–Mg Alloy Matrix Nanocomposites. Arabian J. Sci. Eng. 41, 1781–1796, https://doi.org/10.1007/s13369-015-1969-2 (2016).
doi: 10.1007/s13369-015-1969-2
Akbarpour, M. R. & Pouresmaeil, A. The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flake powder metallurgy and hot pressing method. Diam Relat Mater 88, 6–11, https://doi.org/10.1016/j.diamond.2018.06.021 (2018).
doi: 10.1016/j.diamond.2018.06.021
Chen, M. et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater. Des 142, 288–296, https://doi.org/10.1016/j.matdes.2018.01.044 (2018).
doi: 10.1016/j.matdes.2018.01.044
Jiang, Y. et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Compos A Appl Sci Manuf 111, 73–82, https://doi.org/10.1016/j.compositesa.2018.05.022 (2018).
doi: 10.1016/j.compositesa.2018.05.022
Okoro, A. M. et al. Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J. Alloys Compd. 785, 356–366, https://doi.org/10.1016/j.jallcom.2019.01.174 (2019).
doi: 10.1016/j.jallcom.2019.01.174
Carreño-Gallardo, C., Estrada-Guel, I., López-Meléndez, C. & Martínez-Sánchez, R. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J. Alloys Compd. 586, S68–S72, https://doi.org/10.1016/j.jallcom.2013.03.232 (2014).
doi: 10.1016/j.jallcom.2013.03.232
Siebeck, S., Nestler, D., Podlesak, H. & Wielage, B. In Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives (ed Madjid Fathi) 315–321 (Springer Berlin Heidelberg, 2013).
Kim, S. W. & Khalil, K. A.-R. High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-Bioceramics. J Amer Ceram Soc 89, 1280–1285, https://doi.org/10.1111/j.1551-2916.2005.00902.x (2006).
doi: 10.1111/j.1551-2916.2005.00902.x
Abbasi, B. J., Zakeri, M. & Tayebifard, S. A. High frequency induction heated sintering of nanostructured Al
doi: 10.1016/j.ceramint.2014.01.141
Toozandehjani, M., Matori, K. A., Ostovan, F., Abdul Aziz, S. & Mamat, M. S. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al
doi: 10.3390/ma10111232
Liu, J., Wang, Y., Yang, F., Chen, K. & An, L. Grain refining in spark plasma sintering Al
doi: 10.1016/j.jallcom.2014.10.113
Zhao, Y. H., Liao, X. Z., Cheng, S., Ma, E. & Zhu, Y. T. Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys. Adv Mater 18, 2280–2283, https://doi.org/10.1002/adma.200600310 (2006).
doi: 10.1002/adma.200600310