Acoustic spin-Chern insulator induced by synthetic spin-orbit coupling with spin conservation breaking.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Jun 2020
Historique:
received: 05 05 2020
accepted: 05 06 2020
entrez: 28 6 2020
pubmed: 28 6 2020
medline: 28 6 2020
Statut: epublish

Résumé

Topologically protected surface modes of classical waves hold the promise to enable a variety of applications ranging from robust transport of energy to reliable information processing networks. However, both the route of implementing an analogue of the quantum Hall effect as well as the quantum spin Hall effect are obstructed for acoustics by the requirement of a magnetic field, or the presence of fermionic quantum statistics, respectively. Here, we construct a two-dimensional topological acoustic crystal induced by the synthetic spin-orbit coupling, a crucial ingredient of topological insulators, with spin non-conservation. Our setup allows us to free ourselves of symmetry constraints as we rely on the concept of a non-vanishing "spin" Chern number. We experimentally characterize the emerging boundary states which we show to be gapless and helical. More importantly, we observe the spin flipping transport in an H-shaped device, demonstrating evidently the spin non-conservation of the boundary states.

Identifiants

pubmed: 32591512
doi: 10.1038/s41467-020-17039-1
pii: 10.1038/s41467-020-17039-1
pmc: PMC7320166
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3227

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 11804101
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 11890701

Références

Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
pubmed: 10038961
Weng, H. et al. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
pubmed: 16384250
Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
pubmed: 17170299
Kane, C. L. & Mele, E. J. Z
pubmed: 16241681
Sheng, D. N., Weng, Z. Y., Sheng, L. & Haldane, F. D. M. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006).
pubmed: 16907533
Prodan, E. Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009).
Li, H., Sheng, L., Sheng, D. N. & Xing, D. Y. Chern number of thin films of the topological insulator Bi
Yang, Y. et al. Time-reversal-symmetry-broken quantum spin Hall effect. Phys. Rev. Lett. 107, 066602 (2011).
pubmed: 21902351
Ezawa, M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012).
pubmed: 23006186
Ezawa, M. High spin-Chern insulators with magnetic order. Sci. Rep. 3, 3435 (2013).
pubmed: 24310394 pmcid: 3857861
Chen, C. Z., Liu, H. & Xie, X. C. Effects of random domains on the zero Hall plateau in the quantum anomalous Hall effect. Phys. Rev. Lett. 122, 026601 (2019).
pubmed: 30720308
Barlas, Y. & Prodan, E. Topological classification table implemented with classical passive metamaterials. Phys. Rev. B 98, 094310 (2018).
Li, H., Sheng, L. & Xing, D. Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state. Phys. Rev. Lett. 108, 196806 (2012).
pubmed: 23003075
Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
pubmed: 26196622
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).
Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
pubmed: 18232766
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
pubmed: 19812669
Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).
pubmed: 26382680
Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. U. S. A. 112, 14495–14500 (2015).
pubmed: 26561580 pmcid: 4664354
Fleury, R. et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
pubmed: 24482477
Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).
pubmed: 26440700 pmcid: 4600716
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
pubmed: 25839273
Ni, X. et al. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow. N. J. Phys. 17, 053016 (2015).
Ding, Y. et al. Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 122, 014302 (2019).
pubmed: 31012693
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon 7, 1001–1005 (2013).
Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
pubmed: 26138969
Pal, R. K., Schaeffer, M. & Ruzzene, M. Helical edge states and topological phase transitions in phononic systems using bi-layered lattices. J. Appl. Phys. 119, 084305 (2016).
Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).
pubmed: 26530426 pmcid: 4659837
He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).
Mei, J., Chen, Z. & Wu, Y. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals. Sci. Rep. 6, 32752 (2016).
pubmed: 27587311 pmcid: 5009350
Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2016).
Zhang, Z. et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice. Phys. Rev. Lett. 118, 084303 (2017).
pubmed: 28282192
Yu, S. Y. et al. Elastic pseudospin transport for integratable topological phononic circuits. Nat. Commun. 9, 3072 (2018).
pubmed: 30082756 pmcid: 6078995
Miniaci, M., Pal, R. K., Morvan, B. & Ruzzene, M. Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys. Rev. X 8, 031074 (2018).
Liu, T. W. & Semperlotti, F. Tunable acoustic valley-Hall edge states in reconfigurable phononic elastic waveguides. Phys. Rev. Appl. 9, 014001 (2018).
Cha, J., Kim, K. W. & Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229–233 (2018).
pubmed: 30542167
Yan, M. et al. On-chip valley topological materials for elastic wave manipulation. Nat. Mater. 17, 993–998 (2018).
pubmed: 30349029
Peri, V. et al. Experimental characterization of fragile topology in an acoustic metamaterial. Science 367, 797–800 (2020).
pubmed: 32054764

Auteurs

Weiyin Deng (W)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China.

Xueqin Huang (X)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China.

Jiuyang Lu (J)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China.

Valerio Peri (V)

Institute for Theoretical Physics, ETH Zurich, Zürich, 8093, Switzerland.

Feng Li (F)

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China. phlifeng@scut.edu.cn.

Sebastian D Huber (SD)

Institute for Theoretical Physics, ETH Zurich, Zürich, 8093, Switzerland.

Zhengyou Liu (Z)

Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China. zyliu@whu.edu.cn.
Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China. zyliu@whu.edu.cn.

Classifications MeSH