Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Jun 2020
26 Jun 2020
Historique:
received:
23
08
2019
accepted:
28
05
2020
entrez:
28
6
2020
pubmed:
28
6
2020
medline:
28
6
2020
Statut:
epublish
Résumé
Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.
Identifiants
pubmed: 32591515
doi: 10.1038/s41467-020-17043-5
pii: 10.1038/s41467-020-17043-5
pmc: PMC7320136
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3225Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : T32EB019944
Organisme : National Science Foundation (NSF)
ID : DMR-1720633
Références
Tan, C. et al. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano 6, 3070–3079 (2012).
pubmed: 22424270
Lee, S., Kumar, P., Hu, Y., Cheng, G. J. & Irudayaraj, J. Graphene laminated gold bipyramids as sensitive detection platforms for antibiotic molecules. Chem. Commun. 51, 15494–15497 (2015).
Hui, J. et al. Modulating electrocatalysis on graphene heterostructures: physically impermeable yet electronically transparent electrodes. ACS Nano 12, 2980–2990 (2018).
pubmed: 29444401
Burrows, N. D. et al. Surface chemistry of gold nanorods. Langmuir 32, 9905–9921 (2016).
pubmed: 27568788
Maboudian, R., Ashurst, W. R. & Carraro, C. Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators A: Phys. 82, 219–223 (2000).
Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).
pubmed: 23552117
Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).
pubmed: 20133565
Shrestha, S. & Ranjit, S. in 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) 1–4 (2016).
Bao, Q. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012).
pubmed: 22512399
Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295 (2017).
pubmed: 28383040
Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263 (2009).
pubmed: 19308085
Kim, D. & Sahin, O. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy. Nat. Nanotechnol. 10, 264 (2015).
pubmed: 25664622
pmcid: 4429059
Bhargava, R. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66, 1091–1120 (2012).
pubmed: 23031693
pmcid: 3756188
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).
Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015).
Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134 (1999).
Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352 (2011).
pubmed: 21499314
Wang, L. et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 3, e1700255 (2017).
Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).
pubmed: 27051870
pmcid: 4820382
Dazzi, A., Glotin, F. & Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J.Appl. Phys. 107, 124519 (2010).
Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005).
pubmed: 16196328
Stirling, J. et al. Critical assessment of the evidence for striped nanoparticles. PLoS ONE 9, e108482 (2014).
pubmed: 25402426
pmcid: 4234314
Ong, Q. K. & Stellacci, F. Response to “Critical Assessment of the Evidence for Striped Nanoparticles”. PLoS ONE 10, e0135594 (2015).
pubmed: 26555337
pmcid: 4640849
Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).
pubmed: 23362918
Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007).
pubmed: 19547189
Brehm, M., Schliesser, A., Čajko, F., Tsukerman, I. & Keilmann, F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Opt. Express 16, 11203–11215 (2008).
pubmed: 18648436
Yang, H. U. & Raschke, M. B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. N. J. Phys. 18, 053042 (2016).
Jahng, J., Potma, E. O. & Lee, E. S. Tip-enhanced thermal expansion force for nanoscale chemical imaging and spectroscopy in photoinduced force microscopy. Anal. Chem. 90, 11054–11061 (2018).
pubmed: 30125496
O’Callahan, B. T., Yan, J., Menges, F., Muller, E. A. & Raschke, M. B. Photoinduced tip–sample forces for chemical nanoimaging and spectroscopy. Nano Lett. 18, 5499–5505 (2018).
pubmed: 30080975
Marcott, C., Lo, M., Kjoller, K., Prater, C. & Noda, I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Appl. Spectrosc. 65, 1145–1150 (2011).
pubmed: 21986074
Katzenmeyer, A. M., Holland, G., Kjoller, K. & Centrone, A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Anal. Chem. 87, 3154–3159 (2015).
pubmed: 25707296
Lu, F., Jin, M. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 8, 307–312 (2014).
Rosenberger, M. R. et al. Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. Nanotechnology 28, 355707 (2017).
pubmed: 28656907
Liu, Z. et al. Direct observation of oxygen configuration on individual graphene oxide sheets. Carbon 127, 141–148 (2018).
Barlow, D. E. et al. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film. Analyst 141, 4848–4854 (2016).
pubmed: 27403761
Kenkel, S., Mittal, A., Mittal, S. & Bhargava, R. Probe–sample interaction-independent atomic force microscopy–infrared spectroscopy: toward robust nanoscale compositional mapping. Anal. Chem. 90, 8845–8855 (2018).
pubmed: 29939013
pmcid: 6361725
Mittal, S. et al. Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proc. Natl Acad. Sci. USA 115, E5651 (2018).
Ramer, G., Reisenbauer, F., Steindl, B., Tomischko, W. & Lendl, B. Implementation of resonance tracking for assuring reliability in resonance enhanced photothermal infrared spectroscopy and imaging. Appl. Spectrosc. 71, 2013–2020 (2017).
pubmed: 28756704
Chae, J. et al. Nanophotonic atomic force microscope transducers enable chemical composition and thermal conductivity measurements at the nanoscale. Nano Lett. 17, 5587–5594 (2017).
pubmed: 28770607
pmcid: 5685553
Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).
pubmed: 27958707
Rodriguez, R. D. et al. Optical absorption imaging by photothermal expansion with 4 nm resolution. ACS Photonics 5, 3338–3346 (2018).
Varesi, J. & Majumdar, A. Scanning Joule expansion microscopy at nanometer scales. Appl. Phys. Lett. 72, 37–39 (1998).
Dazzi, A., Saunier, J., Kjoller, K. & Yagoubi, N. Resonance enhanced AFM-IR: a new powerful way to characterize blooming on polymers used in medical devices. Int. J. Pharmaceutics 484, 109–114 (2015).
Kim, S. Y., Khanal, D., Tharkar, P., Kalionis, B. & Chrzanowski, W. None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 3, 430–438 (2018).
pubmed: 32254130
Baldassarre, L. et al. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology 27, 075101 (2016).
Ruggeri, F. S. et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 6, 31155 (2016).
pubmed: 27499269
pmcid: 4976327
Jang, H., Pawate, A. S., Bhargava, R. & Kenis, P. J. A. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. Lab a Chip 19, 2598–2609 (2019).
Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890–2890 (2013).
pubmed: 24301518
pmcid: 3863900
Ruggeri, F. S. et al. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6, 7831 (2015).
pubmed: 26215704
pmcid: 4525161
Babicheva, V. E., Gamage, S., Stockman, M. I. & Abate, Y. Near-field edge fringes at sharp material boundaries. Opt. Express 25, 23935–23944 (2017).
pubmed: 29041343
Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics 5, 3372–3378 (2018).
Ramer, G., Aksyuk, V. A. & Centrone, A. Quantitative chemical analysis at the nanoscale using the photothermal induced resonance technique. Anal. Chem. 89, 13524–13531 (2017).
pubmed: 29165992
pmcid: 5841475
Hammiche, A., Bozec, L., Pollock, H. M., German, M. & Reading, M. Progress in near-field photothermal infra-red microspectroscopy. J Microsc. 213, 129–134 (2004).
pubmed: 14731294