Kinetics of motile solitons in nematic liquid crystals.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Jun 2020
26 Jun 2020
Historique:
received:
20
12
2019
accepted:
26
05
2020
entrez:
28
6
2020
pubmed:
28
6
2020
medline:
28
6
2020
Statut:
epublish
Résumé
The generation of spatially localized, soliton-like hydrodynamic disturbances in microscale fluidic systems is an intriguing challenge. Herein, we introduce nonequilibrium solitons in nematic liquid crystals stimulated by an electric field. These dynamic solitons are robust as long as the electric field is maintained. Interestingly, their kinetic behaviours depend on the field condition-Tuning of the amplitude and frequency of the applied electric field alters the solitons to self-assemble into lattice ordering like physical particles or to command them to various dynamic states. Our key property to the realisation is the electrohydrodynamic instability due to the coupling between the fluid elasticity and the background convection. This paper describes a new mechanism for realising dynamic solitons in fluid systems on the basis of the electrohydrodynamic phenomena.
Identifiants
pubmed: 32591526
doi: 10.1038/s41467-020-16864-8
pii: 10.1038/s41467-020-16864-8
pmc: PMC7319993
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3248Références
Zabusky, N. J. & Kruskal, M. D. Interaction of solitons in a collisionless plasma and recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).
doi: 10.1103/PhysRevLett.15.240
Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).
Doviak, R. J. & Ge, R. S. An atmospheric solitary gust observed with a Doppler radar, a tall tower and a surface network. J. Atmos. Sci. 41, 2559–2573 (1984).
doi: 10.1175/1520-0469(1984)041<2559:AASGOW>2.0.CO;2
Doviak, R. J. & Christie, D. R. Thunderstorm-generated solitary waves—a wind shear hazard. J. Aircraft 26, 423–431 (1989).
doi: 10.2514/3.45780
Lakshmanan, M. in Extreme Environmental Events (ed. Meyers, R. A.) 873–888 (Springer, 2011).
Deng, B., Raney, J. R., Tournat, V. & Bertoldi, K. Elastic vector solitons in soft architected materials. Phys. Rev. Lett. 118, 204102 (2017).
doi: 10.1103/PhysRevLett.118.204102
Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).
doi: 10.1073/pnas.1309394110
Chen, B. G., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).
doi: 10.1073/pnas.1405969111
Kuwayama, H. & Ishida, S. Biological soliton in multicellular movement. Sci. Rep. 3, 2272 (2013).
doi: 10.1038/srep02272
Ward, A. et al. Solid friction between soft filaments. Nat. Mater. 14, 583–588 (2015).
doi: 10.1038/nmat4222
Lenz, G., Meystre, P. & Wright, E. M. Nonlinear atom optics. Phys. Rev. Lett. 71, 3271–3274 (1993).
doi: 10.1103/PhysRevLett.71.3271
Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–100 (2000).
doi: 10.1126/science.287.5450.97
Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).
doi: 10.1126/science.1071021
Mitchell, M. & Segev, M. Self-trapping of incoherent white light. Nature 387, 880–883 (1997).
doi: 10.1038/43136
Piccardi, A., Alberucci, A., Bortolozzo, U., Residori, S. & Assanto, G. Soliton gating and switching in liquid crystal light valve. Appl. Phys. Lett. 96, 071104 (2010).
doi: 10.1063/1.3301261
Assanto, G., Fratalocchi, A. & Peccianti, M. Spatial solitons in nematic liquid crystals: from bulk to discrete. Opt. Express 15, 5248–5259 (2007).
doi: 10.1364/OE.15.005248
Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13, 241–246 (2014).
doi: 10.1038/nmat3862
Okamura, Y., Kagawa, F., Seki, S. & Tokura, Y. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat. Commun. 7, 12669 (2016).
doi: 10.1038/ncomms12669
Takagi, R. et al. Multiple-q noncollinear magnetism in an itinerant hexagonal magnet. Sci. Adv. 4, eaau3402 (2018).
doi: 10.1126/sciadv.aau3402
Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2017).
doi: 10.1038/nmat4826
Ackerman, P. J., Boyle, T. & Smalyukh, I. I. Squirming motion of baby skyrmions in nematic fluid. Nat. Commun. 8, 673 (2017).
doi: 10.1038/s41467-017-00659-5
Sohn, H. R. O. et al. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals. Phys. Rev. E 97, 052701 (2018).
doi: 10.1103/PhysRevE.97.052701
Li, B.-X. et al. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat. Commun. 9, 2912 (2018).
doi: 10.1038/s41467-018-05101-y
Nych, A., Fukuda, J., Ognysta, U., Žumer, S. & Muševič, I. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat. Phys. 13, 1215–1220 (2017).
doi: 10.1038/nphys4245
Li, B.-X., Xiao, R.-L., Paladugu, S., Shiyanovskii, S. V. & Lavrentovich, O. D. Three-dimensional solitary waves with electrically tunable direction of propagation in nematics. Nat. Commun. 10, 3749 (2019).
doi: 10.1038/s41467-019-11768-8
Sohn, H. R. O., Liu, C. D. & Smalyukh, I. I. Schools of skyrmions with electrically tunable elastic interactions. Nat. Commun. 10, 474 (2019).
doi: 10.1038/s41467-019-08313-y
Blinov, L. M. Domain instabilities in liquid crystals. J. Phys. Colloq. 40(C3), C3–247 (1979).
Kramer, L. & Pesch, W. Convection instabilities in nematic liquid crystals. Ann. Rev. Fluid Mech. 27, 515–539 (1995).
doi: 10.1146/annurev.fl.27.010195.002503
Éber, N., Salamon, P. & Buka, Á. Electrically induced patterns in nematics and how to avoid them. Liq. Cryst. Rev. 4, 101–134 (2016).
doi: 10.1080/21680396.2016.1244020
Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103–1112 (1939).
doi: 10.1063/1.1750380
Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940).
doi: 10.1063/1.1750631
Avrami, M. Kinetics of phase change III. Granulation, phase change, and microstructure. J. Chem. Phys. 9, 177–184 (1941).
doi: 10.1063/1.1750872
Torrens-Serra, J. et al. Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method. Materials 4, 2231–2243 (2011).
doi: 10.3390/ma4122231
Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012).
doi: 10.1038/nature10874
Doostmohammadi, A., Adamer, M. F., Thampi, S. P. & Yeomans, J. M. Stabilization of active matter by flow-vortex lattices and defect ordering. Nat. Commun. 7, 10557 (2016).
doi: 10.1038/ncomms10557
de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
Riecke, H. & Granzow, G. D. Localization of waves without bistability: worms in nematic electroconvection. Phys. Rev. Lett. 81, 333–336 (1998).
doi: 10.1103/PhysRevLett.81.333
Dennin, M., Ahlers, G. & Cannell, D. S. Spatiotemporal chaos in electroconvection. Science 272, 388–390 (1996).
doi: 10.1126/science.272.5260.388
Treiber, M. & Kramer, L. Coupled complex Ginzburg–Landau equations for the weak electrolyte model of electroconvection. Phys. Rev. E 58, 1973–1982 (1998).
doi: 10.1103/PhysRevE.58.1973
Riecke, H. in Pattern Formation in Continuous and Coupled Systems. The IMA Volumes in Mathematics and its Applications (eds Golubitsky, M., Luss, D. & Strogatz, S. H.) 215–229 (Springer, New York, NY, 1999).
Hertrich, A., Krekhov, A. & Scaldin, O. The electrohydrodynamic instability in twisted nematic liquid crystals. J. Phys. II France 4, 239–252 (1994).
doi: 10.1051/jp2:1994126