A vibrating beam MEMS accelerometer for gravity and seismic measurements.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 Jun 2020
Historique:
received: 08 02 2020
accepted: 01 06 2020
entrez: 28 6 2020
pubmed: 28 6 2020
medline: 28 6 2020
Statut: epublish

Résumé

This paper introduces a differential vibrating beam MEMS accelerometer demonstrating excellent long-term stability for applications in gravimetry and seismology. The MEMS gravimeter module demonstrates an output Allan deviation of 9 μGal for a 1000 s integration time, a noise floor of 100 μGal/√Hz, and measurement over the full ±1 g dynamic range (1 g = 9.81 ms

Identifiants

pubmed: 32591608
doi: 10.1038/s41598-020-67046-x
pii: 10.1038/s41598-020-67046-x
pmc: PMC7320019
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10415

Références

Binning, G., Quate, C. F. & Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 56, 930 (1986).
doi: 10.1103/PhysRevLett.56.930
Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460 (2004).
doi: 10.1063/1.1787942
Pike, W. T., Standley, I. M., Calcutt, S. B. & Mukherjee, A. G. A broad-band silicon microseismometer with 0.25 ng/rt-Hz performance. Proc. IEEE MEMS 2018, 113–116 (2018).
Middlemiss, R. P. et al. Measurement of earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016).
doi: 10.1038/nature17397
Tang, S. et al. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst. Nanoeng 5, 45 (2019).
doi: 10.1038/s41378-019-0089-7
Lewis, K. et al. A surface gravity traverse on Mars indicates low bedrock density at Gale crater. Science 363, 535–537 (2019).
doi: 10.1126/science.aat0738
Boser, B. E. & Howe, R. T. Surface-micromachined accelerometers. IEEE J. Solid-State Circuits 31(3), 366–375 (1996).
doi: 10.1109/4.494198
Gilbert, R. L. G. A dynamic gravimeter of novel design. Proc. Phys. Soc., B 62, 445–454 (1949).
doi: 10.1088/0370-1301/62/7/305
Gilbert, R. L. G. Gravity observations in a borehole. Nature 170, 424–425 (1952).
doi: 10.1038/170424a0
Wing, C. G. MIT vibrating string surface-ship gravimeter, J. Geophys. Res., 5882-5894, (1969).
Henderson, G. C. & Iverson, R. M. Testing gravimeters for lunar surface measurements. IEEE Trans. Geosci. Electron., GE- 6(3), 132–138 (1968).
doi: 10.1109/TGE.1968.271265
Seshia, A. A. et al. A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002).
doi: 10.1109/JMEMS.2002.805207
Zou, X., Thiruvenkatanathan, P. & Seshia, A. A. A seismic-grade resonant MEMS accelerometer. J. Microelectromech. Syst. 23(4), 768–770 (2014).
doi: 10.1109/JMEMS.2014.2319196
Pandit, M. et al. An ultra-high resolution resonant MEMS accelerometer, Proc. 2019 IEEE MEMS, Seoul, Korea, pp. 664-667 (2019).
Amini, B. V. & Ayazi, F. Micro-gravity capacitive silicon-on-insulator accelerometers. J. Micromech. Microeng. 15, 2113–2120 (2005).
doi: 10.1088/0960-1317/15/11/017
Klassen, E. H. et al. Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens. Act. A 52, 132–139 (1996).
doi: 10.1016/0924-4247(96)80138-5
Rimskog, M. Through Wafer Via Technology for MEMS and 3D Integration, 2007 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 286-289 (2007).
Esashi, M. Wafer level packaging of MEMS. J. Micromech. Microeng. 18, 073001 (2008).
doi: 10.1088/0960-1317/18/7/073001
Ikeda, K. et al. Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm, Sens. Actuators A: Phys 23, 1007–1010 (1990).
doi: 10.1016/0924-4247(90)87078-W
Lifshitz, R. & Roukes, M. Thermoelastic damping in micro and nanomechanical systems. Phys Rev B 61(8), 5600–5609 (2000).
doi: 10.1103/PhysRevB.61.5600
Mustafazade A. & Seshia A. A. Compact High-Precision Analog Temperature Controller for MEMS Inertial Sensors, Proc. 2018 IEEE Intl. Freq. Control Symposium, 2018.
Van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. of Micromech. Microeng. 22, 013001 (2012).
doi: 10.1088/0960-1317/22/1/013001
Niebauer, T. M., Blitz, T. & Constantino, A. Off-level corrections for gravity meters. Metrologia 53, 835–839 (2016).
doi: 10.1088/0026-1394/53/2/835
Tatar, E., Mukherjee, T. & Fedder, G. K. Stress effects and compensation of bias drift in a MEMS vibratory rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579 (2017).
doi: 10.1109/JMEMS.2017.2675452
Malkin, Z. Application of the Allan Variance to time series analysis in astrometry and geodesy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 63(4), 582–589 (2016).
doi: 10.1109/TUFFC.2015.2496337
Peterson, J. Observations and modeling of background seismic noise, U.S. Geol. Surv. Open-File Rept. 93–322 (1993).
Van Camp, M. & Vauterin, P. Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci. 31, 631–640 (2005).
doi: 10.1016/j.cageo.2004.11.015
Schultz, A. K. Monitoring fluid movement with the borehole gravity meter. Geophysics 54(10), 1267–1273 (1989).
doi: 10.1190/1.1442586
Hare, J. L., Ferguson, J. F., Aiken, C. L. V. & Brady, J. L. The 4D microgravity method for waterflood surveillance: A model study for the Prudhoe Bay reservoir, Alaska. Geophysics 64(1), 78–87 (1999).
doi: 10.1190/1.1444533
Sherlock, D. et al. Gravity monitoring of CO2 storage in a depleted gas field: a sensitivity study. Explor. Geophys. 37, 37–43 (2006).
doi: 10.1071/EG06037
Nabighian, M. N. et al. Historical development of the gravity method in exploration, Geophysics 70(6), 63ND–89ND (2005).
Butler, D. K. Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49(7), 1084–1096 (1984).
doi: 10.1190/1.1441723
Battaglia, M., Gottsmann, J., Carbone, D. & Fernandez, J. 4-D volcano gravimetry, Geophysics 73(6), WA3–WA18 (2008).

Auteurs

Arif Mustafazade (A)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK.
Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK.

Milind Pandit (M)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK.
Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK.

Chun Zhao (C)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK.

Guillermo Sobreviela (G)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK.
Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK.

Zhijun Du (Z)

Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK.

Philipp Steinmann (P)

Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK.

Xudong Zou (X)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK.
State Key Lab of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China.

Roger T Howe (RT)

Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.

Ashwin A Seshia (AA)

Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, UK. aas41@cam.ac.uk.
Silicon Microgravity Ltd., Cambridge Innovation Park, Waterbeach, Cambridge, CB25 9GL, UK. aas41@cam.ac.uk.

Classifications MeSH