Machine learning analysis identifies genes differentiating triple negative breast cancers.
Antigens, Surface
/ genetics
Biomarkers, Tumor
/ genetics
Calcium-Binding Proteins
/ genetics
Female
Gene Expression Regulation, Neoplastic
/ genetics
HEK293 Cells
Humans
Machine Learning
Neoplasm Recurrence, Local
/ genetics
Prognosis
Transcriptome
/ genetics
Triple Negative Breast Neoplasms
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 06 2020
26 06 2020
Historique:
received:
26
02
2020
accepted:
02
06
2020
entrez:
28
6
2020
pubmed:
28
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various molecular approaches have been used to target TNBC but with little success. Here, using machine learning algorithms, we analyzed the available BC data from the Cancer Genome Atlas Network (TCGA) and have identified two potential genes, TBC1D9 (TBC1 domain family member 9) and MFGE8 (Milk Fat Globule-EGF Factor 8 Protein), that could successfully differentiate TNBC from non-TNBC, irrespective of their heterogeneity. TBC1D9 is under-expressed in TNBC as compared to non-TNBC patients, while MFGE8 is over-expressed. Overexpression of TBC1D9 has a better prognosis whereas overexpression of MFGE8 correlates with a poor prognosis. Protein-protein interaction analysis by affinity purification mass spectrometry (AP-MS) and proximity biotinylation (BioID) experiments identified a role for TBC1D9 in maintaining cellular integrity, whereas MFGE8 would be involved in various tumor survival processes. These promising genes could serve as biomarkers for TNBC and deserve further investigation as they have the potential to be developed as therapeutic targets for TNBC.
Identifiants
pubmed: 32591639
doi: 10.1038/s41598-020-67525-1
pii: 10.1038/s41598-020-67525-1
pmc: PMC7320018
doi:
Substances chimiques
Antigens, Surface
0
Biomarkers, Tumor
0
Calcium-Binding Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10464Références
Podo, F. et al. Triple-negative breast cancer: Present challenges and new perspectives. Mol. Oncol. 4, 209–229 (2010).
pubmed: 20537966
pmcid: 5527939
Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9, 3588 (2008).
Mustacchi, G. & De Laurentiis, M. The role of taxanes in triple-negative breast cancer: Literature review. Drug. Des. Devel. Ther. 9, 4303–4318 (2015).
pubmed: 26273192
pmcid: 4532347
Thomas, E. S. et al. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J. Clin. Oncol. 25, 5210–5217 (2007).
pubmed: 17968020
Liedtke, C. et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008).
pubmed: 18250347
Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).
pubmed: 21633166
pmcid: 3127435
National Cancer Institute. News and events, cancer current blog. https://www.cancer.gov/news-events/cancer-currents-blog/2019/atezolizumab-triple-negative-breast-cancer-fda-approval (2019). Accessed 16 Dec 2019.
Cyprian, F. S., Akhtar, S., Gatalica, Z. & Vranic, S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: A new clinical paradigm in the treatment of triple-negative breast cancer. Bosn. J. Basic Med. Sci. 19, 227–233 (2019).
pubmed: 30915922
pmcid: 6716092
Hwang, S. Y., Park, S. & Kwon, Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol. Ther. 199, 30–57 (2019).
pubmed: 30825473
Yadav, B. S., Chanana, P. & Jhamb, S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol. 6, 252–263 (2015).
pubmed: 26677438
pmcid: 4675910
Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64. https://doi.org/10.1186/s12874-019-0681-4 (2019).
doi: 10.1186/s12874-019-0681-4
pubmed: 30890124
pmcid: 6425557
Towards Data Science. Understanding Random Forest. https://towardsdatascience.com/understanding-random-forest-58381e0602d2 (2019). Accessed 16 Dec 2019.
Marchand, M. & Shawe-Taylor, J. The set covering machine. J. Mach. Learn. Res. 3, 723–746 (2002).
Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res. Treat. 123, 725–731 (2010).
pubmed: 20020197
Glück, S. et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine ± trastuzumab. Breast Cancer Res. Treat. 132, 781–791 (2012).
pubmed: 21373875
Masuda, H. et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res. 19, 5533–5540 (2013).
pubmed: 23948975
Kassam, F. et al. Survival outcomes for patients with metastatic triple-negatie breast cancer: Implications for clinical practice and trial design. Clin. Breast Cancer. 9, 29–33 (2009).
pubmed: 19299237
Hubalek, M., Czech, T. & Müller, H. Biological subtypes of triple-negative breast cancer. Breast Care (Basel). 12, 8–14 (2017).
pubmed: 28611535
pmcid: 5465739
Shao, F., Sun, H. & Deng, C. X. Potential therapeutic targets of triple-negative breast cancer based on its intrinsic subtype. Oncotarget. 8, 73329–73344 (2017).
pubmed: 29069872
pmcid: 5641215
de Ronde, J. J. et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res. Treat. 119, 119–126 (2010).
pubmed: 19669409
Andres, S. A., Brock, G. N. & Wittliff, J. L. Interrogating differences in expression of targeted gene sets to predict breast cancer outcome. BMC Cancer. 13, 326 (2013).
pubmed: 23819905
pmcid: 3707751
Haiman, C. A. et al. Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet. 9, e1003419 (2013).
pubmed: 23555315
pmcid: 3610631
Carrascosa, C. et al. MFG-E8/lactadherin regulates cyclins D1/D3 expression and enhances the tumorigenic potential of mammary epithelial cells. Oncogene 31, 1521–1532 (2012).
pubmed: 21841820
Khatter, D., Sindhwani, A. & Sharma, M. Arf-like GTPase Arl8: Moving from the periphery to the center of lysosomal biology. Cell Logist. 5, e1086501 (2015).
pubmed: 27057420
pmcid: 4820812
Machado, E. et al. Regulated lysosomal exocytosis mediates cancer progression. Sci. Adv. 1, e1500603 (2015).
pubmed: 26824057
pmcid: 4730843
Nugues, C., Helassa, N., Rajamanoharan, D., Burgoyne, R. D. & Haynes, L. P. Lysosome exocytosis is required for mitosis. bioRxiv. (2018). https://doi.org/10.1101/375816 .
doi: 10.1101/375816
Thelen, A. M. & Zoncu, R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. 27, 833–850 (2017).
pubmed: 28838620
pmcid: 5653458
Haren, L., Stearns, T. & Lüders, J. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009).
pubmed: 19543530
pmcid: 2695007
Johmura, Y. et al. Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc. Natl. Acad. Sci. USA 108, 11446–11451 (2011).
pubmed: 21690413
Pintard, L. & Archambault, V. A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key. Open Biol. 8, 180114 (2018).
pubmed: 30135239
pmcid: 6119860
Bruinsma, W. et al. Spatial separation of Plk1 phosphorylation and activity. Front. Oncol. 5, 132 (2015).
pubmed: 26114094
pmcid: 4462105
Soki, F. N. et al. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J. Biol. Chem. 289, 24560–24572 (2014).
pubmed: 25006249
pmcid: 4148880
Vallabhapurapu, S. D. et al. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget. 6, 34375–34388 (2015).
pubmed: 26462157
pmcid: 4741459
Jinushi, M., Baghdadi, M., Chiba, S. & Yoshiyama, H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am. J. Cancer Res. 2, 529–539 (2012).
pubmed: 22957305
pmcid: 3433107
Jinushi, M., Yagita, H., Yoshiyama, H. & Tahara, H. Putting the brakes on anticancer therapies: Suppression of innate immune pathways by tumor-associated myeloid cells. Trends Mol. Med. 19, 536–545 (2013).
pubmed: 23810190
Pang, Y. L., Poruri, K. & Martinis, S. A. tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdiscip. Rev. RNA. 5, 461–480 (2014).
pubmed: 24706556
pmcid: 4062602
Baek, J. H. et al. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol. Cell. 17, 503–512 (2005).
pubmed: 15721254
Stowell, S. R., Ju, T. & Cummings, R. D. Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015).
pubmed: 25621663
pmcid: 4396820
Morris, L. G. T., Timothy, A. & Chan, T. A. Therapeutic targeting of tumor suppressor. Genes Cancer 121, 1357–1368 (2015).
Goonesekere, N. C. W., Andersen, W., Smith, A. & Wang, X. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: Implications for discovery of novel tumor-suppressor genes and therapeutic targets. J. Cancer Res. Clin. Oncol. 144, 309–320 (2018).
pubmed: 29288362
Lambert, J. P., Tucholska, M., Go, C., Knight, J. D. & Gingras, A. C. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J. Proteomics. 118, 81–94 (2015).
pubmed: 25281560
Song, Y. Y. & Lu, Y. Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry. 27, 130–135 (2015).
pubmed: 26120265
pmcid: 4466856
Kong, Y. & Yu, T. A deep neural network model using random forest to extract feature representation for gene expression data classification. Sci. Rep. 8, 16477 (2018).
pubmed: 30405137
pmcid: 6220289
Kothari, C. et al. Identification of a gene signature for different stages of breast cancer development that could be used for early diagnosis and specific therapy. Oncotarget. 9, 37407–37420 (2018).
pubmed: 30647841
pmcid: 6324778
Luu-The, V., Paquet, N., Calvo, E. & Cumps, J. Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques 38, 287–293 (2005).
pubmed: 15727135
Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).
pubmed: 12585499
Aumailley, L., Roux-Dalvai, F., Kelly, I. & Droit, A. Vitamin C alters the amount of specific endoplasmic reticulum associated proteins involved in lipid metabolism in the liver of mice synthesizing a nonfunctional Werner syndrome (Wrn) mutant protein. PLoS ONE 13, e0193170 (2018).
pubmed: 29494634
pmcid: 5832228
Dalvai, M. et al. A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep. 13(3), 621–633 (2015).
pubmed: 26456817
Liu, G. et al. Data independent acquisition analysis in ProHits 4.0. J. Proteomics. 149, 64–68 (2016).
pubmed: 27132685
pmcid: 5079801
Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).
pubmed: 2732273
pmcid: 2732273
Deutsch, E. W. et al. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin. Appl. 9, 745–754 (2015).
pubmed: 25631240
pmcid: 4506239
Shteynberg, D. et al. iProphet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell Proteom. 10, M111.007690 (2011).
Teo, G. et al. SAINTexpress: Improvements and additional features in significance analysis of INTeractome software. J. Proteom. 100, 37–43 (2014).
Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).
pubmed: 26193342
pmcid: 4852857
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA. 100, 9440–9445 (2003).
pubmed: 12883005