Efficient photodynamic therapy against drug-resistant prostate cancer using replication-deficient virus particles and talaporfin sodium.


Journal

Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 25 02 2020
accepted: 16 06 2020
pubmed: 28 6 2020
medline: 28 5 2021
entrez: 28 6 2020
Statut: ppublish

Résumé

To enhance the potency of photosensitizer, we developed a novel photosensitizer, Laserphyrin®-HVJ-E (L-HVJ-E), by incorporating talaporfin sodium (Laserphyrin®, Meiji Seika Pharma) into hemagglutinating virus of Japan envelope (HVJ-E). In this study, we examined the optimal Laserphyrin® concentration for preparation of Laserphyrin®-HVJ-E which had photocytotoxicity and maintained direct cytotoxicity derived from HVJ-E. Then, potency of Laserphyrin®-HVJ-E and Laserphyrin® were compared in vitro using castration-resistant prostate cancer cell line (PC-3). A laser diode (L660P120, Thorlabs, USA) with a wavelength of 664 nm was used for light activation of Laserphyrin®, which corresponds to an absorption peak of Laserphyrin® and provides a high therapeutic efficiency. The photocytotoxicity and direct cytotoxicity of Laserphyrin®-HVJ-E prepared using various Laserphyrin® concentrations were evaluated using PC-3 cell in vitro. We categorized the treatment groups as Group 1: 50 μL of D-MEM treatment group, Group 2: HVJ-E treatment group, Group 3: Laserphyrin®-HVJ-E treatment group, and Group 4: Laserphyrin® treatment group. Group 3 was subjected to different concentrations of Laserphyrin®-HVJ-E suspension, and all groups were subjected to different incubation periods (24, 48 h), (30 min, 1 h, or 3 h,) respectively, without and after PDT. Laserphyrin®-HVJ-E prepared using 15 mM Laserphyrin® had high photocytotoxicity and maintained HVJ-E's ability to induce direct cytotoxicity. Therapeutic effect of Laserphyrin®-HVJ-E was substantially equivalent to that of Laserphyrin® alone even at half Laserphyrin® concentration. By utilizing Laserphyrin®-HVJ-E, PDT could be performed with lower Laserphyrin® concentration. In addition, Laserphyrin®-HVJ-E showed higher potency than Laserphyrin® by combining cytotoxicities of HVJ-E and PDT.

Identifiants

pubmed: 32592133
doi: 10.1007/s10103-020-03076-1
pii: 10.1007/s10103-020-03076-1
doi:

Substances chimiques

Antineoplastic Agents 0
Photosensitizing Agents 0
Porphyrins 0
Talaporfin P4ROX5ELT2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

743-750

Subventions

Organisme : Japan Society for the Promotion of Science KAKENHI
ID : JP15K16322
Organisme : Japan Agency for Medical Research and Development
ID : J169013067

Commentaires et corrections

Type : ErratumIn

Références

Ferlay J et al (Mar. 2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386
doi: 10.1002/ijc.29210
Zhou CK et al (Mar. 2016) Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer 138(6):1388–1400
doi: 10.1002/ijc.29894
Survival rates for prostate cancer. [Online]. Available: https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/survival-rates.html . [Accessed: 26-Dec-2019]
Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Liao Persson J (2012) Overcoming drug resistance and treating advanced prostate Cancer. Curr Drug Targets 13(10):1308–1323
doi: 10.2174/138945012802429615
Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10(3):148–154
doi: 10.1007/s12094-008-0172-2
Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis and Photodynamic Therapy 7(2):61–75
doi: 10.1016/j.pdpdt.2010.02.001
Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Letters 326(1):8–16
doi: 10.1016/j.canlet.2012.07.026
Dougherty TJ, Cooper MT, Mang TS (Jan. 1990) Cutaneous phototoxic occurrences in patients receiving Photofrin®. Lasers Surg Med 10(5):485–488
doi: 10.1002/lsm.1900100514
Agostinis P et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281
doi: 10.3322/caac.20114
Kataoka H et al (2017) New photodynamic therapy with next-generation photosensitizers. Annals of Translational Medicine 5(8) AME Publishing Company
J. Akimoto, Photodynamic therapy for malignant brain tumors, Neurologia Medico-Chirurgica, vol. 56, no. 4. Japan Neurosurgical Society, pp. 151–157, 15-Apr-2016
Usuda J et al (Dec. 2007) Photodynamic therapy for lung cancers based on novel photodynamic diagnosis using talaporfin sodium (NPe6) and autofluorescence bronchoscopy. Lung Cancer 58(3):317–323
doi: 10.1016/j.lungcan.2007.06.026
Yano T et al (2017) A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget 8(13):22135–22144
doi: 10.18632/oncotarget.14029
Wang S, Bromley E, Xu L, Chen JC, Keltner L (2010) Talaporfin sodium. Expert Opinion on Pharmacotherapy 11(1):133–140
doi: 10.1517/14656560903463893
J. S. Nelson, W. G. Roberts, and M. W. Berns, In vivo studies on the utilization of mono-L-aspartyl chlorin (NPe6) for photodynamic therapy., undefined, 1987
Minamide T et al (Feb. 2020) Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Surg Endosc 34(2):899–906
doi: 10.1007/s00464-019-06846-3
Kaneda Y et al (2002) Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 6(2):219–226
doi: 10.1006/mthe.2002.0647
Zhang Q, Li Y, Shi Y, Zhang Y (2008) HVJ envelope vector, a versatile delivery system: Its development, application, and perspectives. Biochemical and Biophysical Research Communications 373(3) Academic Press:345–349
doi: 10.1016/j.bbrc.2008.06.055
Kaneda Y (2010) Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 7(9):1079–1093
doi: 10.1517/17425247.2010.510511
Kawaguchi Y, Miyamoto Y, Inoue T, Kaneda Y (2009) Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int J Cancer 124(10):2478–2487
doi: 10.1002/ijc.24234
Chang CY, Tai JA, Li S, Nishikawa T, Kaneda Y (2016) Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity. Oncotarget 7(27):42195–42207
doi: 10.18632/oncotarget.9743
Matsushima-Miyagi T et al (2012) TRAIL and Noxa are selectively upregulated in prostate cancer cells downstream of the RIG-I/MAVS signaling pathway by nonreplicating Sendai virus particles. Clin Cancer Res 18(22):6271–6283
doi: 10.1158/1078-0432.CCR-12-1595
Hong Y et al (2018) Highly selective photodynamic therapy with a short drug-light interval using a cytotoxic photosensitizer porphyrus envelope for drug-resistant prostate cancer cells. Int J Clin Med 09(01):8–22
doi: 10.4236/ijcm.2018.91002
Inai M et al (2017) Photodynamic therapy using a cytotoxic photosensitizer porphyrus envelope that targets the cell membrane. Photodiagn Photodyn Ther 20:238–245
doi: 10.1016/j.pdpdt.2017.10.017
Akter S et al (2019) Photodynamic therapy by lysosomal-targeted drug delivery using talaporfin sodium incorporated into inactivated virus particles. LASER Ther
Spikes JD, Bommer JC (1993) Photosensitizing properties of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B Biol 17(2):135–143
doi: 10.1016/1011-1344(93)80006-U
Matveeva OV, Kochneva GV, Netesov SV, Onikienko SB, Chumakov PM Mechanisms of oncolysis by Paramyxovirus Sendai. Acta Naturae 7(2):6–16
Bateman A et al (2000) Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 60(6):1492–1497
pubmed: 10749110
Ebert O, Shinozaki K, Kournioti C, Park MS, García-Sastre A, Woo SLC (2004) Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 64(9):3265–3270
doi: 10.1158/0008-5472.CAN-03-3753
Saga K, Kaneda Y (2015) Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic virotherapy 4:141–147
pubmed: 27512677 pmcid: 4918391
Kaneda Y (2013) The RIG-I/MAVS signaling pathway in cancer cell-selective apoptosis. Oncoimmunology 2(4)

Auteurs

Sharmin Akter (S)

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. akter-s@see.eng.osaka-u.ac.jp.
Department of Physiology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh. akter-s@see.eng.osaka-u.ac.jp.

Sachiko Saito (S)

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Mizuho Inai (M)

Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Norihiro Honda (N)

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Hisanao Hazama (H)

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Tomoyuki Nishikawa (T)

Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Yasufumi Kaneda (Y)

Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Kunio Awazu (K)

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH