Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 03 01 2020
accepted: 17 04 2020
entrez: 30 6 2020
pubmed: 1 7 2020
medline: 1 7 2020
Statut: epublish

Résumé

Nanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution. Here, we have nanofabricated quasi-two-dimensional mimics of porous catalysts, which combine the traits of nanofluidics with single particle plasmonics and online mass spectrometry readout. Enabled by single particle resolution at

Identifiants

pubmed: 32596464
doi: 10.1126/sciadv.aba7678
pii: aba7678
pmc: PMC7304992
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eaba7678

Informations de copyright

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Nano Lett. 2016 Dec 14;16(12):7857-7864
pubmed: 27960495
Rev Sci Instrum. 2009 Dec;80(12):124101
pubmed: 20059154
Chem Soc Rev. 2018 Apr 3;47(7):2485-2508
pubmed: 29542749
Nat Mater. 2015 Dec;14(12):1236-44
pubmed: 26343912
Nat Commun. 2017 Oct 20;8(1):1084
pubmed: 29057929
Nat Mater. 2011 May 15;10(8):631-6
pubmed: 21572410
Science. 2003 Mar 14;299(5613):1688-91
pubmed: 12637733
Nat Nanotechnol. 2012 Sep;7(9):583-6
pubmed: 22902959
Angew Chem Int Ed Engl. 2008;47(26):4835-9
pubmed: 18496809
Nano Lett. 2010 Sep 8;10(9):3529-38
pubmed: 20718400
Beilstein J Org Chem. 2015 Nov 19;11:2252-3
pubmed: 26664648
J Chem Phys. 2007 May 21;126(19):194702
pubmed: 17523823
J Phys Condens Matter. 2012 May 2;24(17):175002
pubmed: 22475683
Adv Mater. 2011 Oct 11;23(38):4409-14
pubmed: 21898608
J Am Chem Soc. 2015 Sep 2;137(34):11186-90
pubmed: 26275662
Annu Rev Phys Chem. 2014;65:395-422
pubmed: 24423372
Nat Chem. 2012 Nov;4(11):873-86
pubmed: 23089861
Nanoscale. 2019 Nov 21;11(43):20725-20733
pubmed: 31650143
Nat Nanotechnol. 2012 Feb 19;7(4):237-41
pubmed: 22343380
Nature. 2017 Jan 4;541(7635):68-71
pubmed: 28054605
Nat Mater. 2014 Sep;13(9):884-90
pubmed: 25038730
Nat Commun. 2017 Sep 8;8(1):488
pubmed: 28887563
Nat Commun. 2019 Sep 27;10(1):4426
pubmed: 31562383

Auteurs

David Albinsson (D)

Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Stephan Bartling (S)

Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Sara Nilsson (S)

Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Henrik Ström (H)

Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Joachim Fritzsche (J)

Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Christoph Langhammer (C)

Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Classifications MeSH