Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds.

Fabrication process parameters Ink materials Ink rheology Solvent-based extrusion 3D printing Tissue scaffolds

Journal

International journal of bioprinting
ISSN: 2424-8002
Titre abrégé: Int J Bioprint
Pays: Singapore
ID NLM: 101709763

Informations de publication

Date de publication:
2020
Historique:
received: 30 05 2019
accepted: 02 12 2019
entrez: 30 6 2020
pubmed: 1 7 2020
medline: 1 7 2020
Statut: epublish

Résumé

Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, cross-linking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.

Identifiants

pubmed: 32596549
doi: 10.18063/ijb.v6i1.211
pii: IJB-6-211
pmc: PMC7294686
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

211

Informations de copyright

Copyright © 2020, Whioce Publishing Pte. Ltd.

Déclaration de conflit d'intérêts

The authors declare that they have no conflicts of interest.

Références

J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554
pubmed: 28125380
Biomaterials. 2010 Sep;31(27):6909-16
pubmed: 20579724
Adv Healthc Mater. 2012 Nov;1(6):729-35
pubmed: 23184824
Sci Rep. 2017 Dec 6;7(1):17042
pubmed: 29213126
Adv Healthc Mater. 2015 Aug 26;4(12):1742-62
pubmed: 26097108
Biotechnol J. 2015 Oct;10(10):1568-77
pubmed: 25641582
Acta Biomater. 2014 May;10(5):1836-46
pubmed: 24334142
Adv Mater. 2015 Mar 4;27(9):1607-14
pubmed: 25641220
Biomater Sci. 2013 Jul 4;1(7):763-773
pubmed: 32481829
Arthritis Rheum. 2002 Sep;46(9):2524-34
pubmed: 12355501
Adv Mater. 2017 Jan;29(3):
pubmed: 27859710
J Funct Biomater. 2011 Aug 04;2(3):119-54
pubmed: 24956301
Biomaterials. 2011 Jul;32(21):4793-805
pubmed: 21489619
Adv Healthc Mater. 2018 Apr;7(8):e1701161
pubmed: 29283220
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3299-304
pubmed: 19820164
Sci Rep. 2016 Jul 20;6:29977
pubmed: 27436509
Sci Rep. 2016 Apr 19;6:24474
pubmed: 27091175
J Biomater Sci Polym Ed. 2018 Aug;29(12):1444-1462
pubmed: 29656699
Biofabrication. 2016 Sep 16;8(3):035020
pubmed: 27634915
Biomacromolecules. 2015 May 11;16(5):1489-96
pubmed: 25806996
Biofabrication. 2015 Aug 11;7(3):035006
pubmed: 26260872
Tissue Eng Part C Methods. 2016 Jul;22(7):652-62
pubmed: 27166436
J Biomed Mater Res A. 2013 May;101(5):1255-64
pubmed: 23015540
Interface Focus. 2015 Apr 6;5(2):20140097
pubmed: 25844157
J Biomed Mater Res B Appl Biomater. 2016 Aug;104(6):1210-9
pubmed: 26089195
J Appl Biomater Biomech. 2009 Sep-Dec;7(3):141-52
pubmed: 20740423
Biomaterials. 2009 Mar;30(8):1587-95
pubmed: 19108884
Biomaterials. 2016 Nov;106:58-68
pubmed: 27552316
Macromol Biosci. 2013 May;13(5):551-61
pubmed: 23420700
Biomaterials. 2005 Jan;26(1):63-72
pubmed: 15193881
Acta Biomater. 2014 Feb;10(2):630-40
pubmed: 24157694
Biomaterials. 2011 Apr;32(11):2878-84
pubmed: 21288567
Adv Healthc Mater. 2016 Feb 4;5(3):326-33
pubmed: 26626828
Sci Transl Med. 2016 Sep 28;8(358):358ra127
pubmed: 27683552
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2816-20
pubmed: 25640578
ACS Appl Mater Interfaces. 2016 Nov 2;8(43):29749-29758
pubmed: 27723297
J Mater Sci Mater Med. 2015 Apr;26(4):167
pubmed: 25791458
Anal Chem. 2014 Apr 1;86(7):3240-53
pubmed: 24432804
Acta Biomater. 2013 Mar;9(3):5521-30
pubmed: 23142224
Tissue Eng. 2005 Sep-Oct;11(9-10):1297-311
pubmed: 16259586
Biomacromolecules. 2011 May 9;12(5):1831-8
pubmed: 21425854
Biomaterials. 2013 Sep;34(29):7016-32
pubmed: 23787111
J Biomed Mater Res A. 2008 Apr;85(1):218-27
pubmed: 17688280
Int J Pharm. 2008 Mar 3;351(1-2):201-8
pubmed: 18036753
Bioact Mater. 2018 Feb 20;3(2):144-156
pubmed: 29744452
Biotechnol J. 2017 Aug;12(8):
pubmed: 28544779
Adv Mater. 2016 Jan 27;28(4):677-84
pubmed: 26606883
Biofabrication. 2012 Sep;4(3):035005
pubmed: 22914604
Biomaterials. 2000 Dec;21(24):2599-606
pubmed: 11071609
Stem Cells. 2008 Jan;26(1):127-34
pubmed: 17901398

Auteurs

Bin Zhang (B)

Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA.

Rodica Cristescu (R)

National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania.

Douglas B Chrisey (DB)

Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA.

Roger J Narayan (RJ)

Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA.

Classifications MeSH