Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 06 2020
Historique:
received: 05 12 2019
accepted: 17 04 2020
entrez: 1 7 2020
pubmed: 1 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for transmembrane-electrostatically localized proton energy storage; and 2) The geometric effect of a mitochondrial crista enhances the transmembrane-electrostatically localized proton density to the crista tip where the ATP synthase can readily utilize the localized proton density to drive ATP synthesis.

Identifiants

pubmed: 32601276
doi: 10.1038/s41598-020-66203-6
pii: 10.1038/s41598-020-66203-6
pmc: PMC7324581
doi:

Substances chimiques

Protons 0
Adenosine Triphosphate 8L70Q75FXE

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10304

Références

Zick, M., Rabl, R. & Reichert, A. S. Cristae formation-linking ultrastructure and function of mitochondria. Bba-Mol Cell Res 1793, 5–19, https://doi.org/10.1016/j.bbamcr.2008.06.013 (2009).
doi: 10.1016/j.bbamcr.2008.06.013
Paumard, P. et al. The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J 21, 221-230, 10.1093/emboj/21.3.221 (2002).
Rabl, R. et al. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. The Journal of cell biology 185, 1047–1063, https://doi.org/10.1083/jcb.200811099 (2009).
doi: 10.1083/jcb.200811099 pubmed: 19528297 pmcid: 2711607
Paumard, P. et al. Two ATP synthases can be linked through subunits i in the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry-Us 41, 10390–10396, https://doi.org/10.1021/bi025923g (2002).
doi: 10.1021/bi025923g
Giraud, M. F. et al. Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Bba-Bioenergetics 1555, 174–180, https://doi.org/10.1016/S0005-2728(02)00274-8 (2002).
doi: 10.1016/S0005-2728(02)00274-8 pubmed: 12206911
Vogel, F., Bornhovd, C., Neupert, W. & Reichert, A. S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175, 237–247, https://doi.org/10.1083/jcb.200605138 (2006).
doi: 10.1083/jcb.200605138 pubmed: 17043137 pmcid: 2064565
Bornhovd, C., Vogel, F., Neupert, W. & Reichert, A. S. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. J Biol Chem 281, 13990–13998, https://doi.org/10.1074/jbc.M512334200 (2006).
doi: 10.1074/jbc.M512334200 pubmed: 16551625
Jimenez, L. et al. synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation. J Cell Sci 127, 719–726, https://doi.org/10.1242/jcs.137141 (2014).
doi: 10.1242/jcs.137141 pubmed: 24338369
Colina-Tenorio, L., Horten, P., Pfanner, N. & Rampelt, H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med n/a, https://doi.org/10.1111/joim.13031 (2020).
Kuhlbrandt, W. Structure and function of mitochondrial membrane protein complexes. Bmc Biol 13, https://doi.org/10.1186/s12915-015-0201-x (2015).
Davies, K. M. et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. P Natl Acad Sci USA 108, 14121–14126, https://doi.org/10.1073/pnas.1103621108 (2011).
doi: 10.1073/pnas.1103621108
Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gomez, J. D. & Kuhlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. P Natl Acad Sci USA 109, 13602–13607, https://doi.org/10.1073/pnas.1204593109 (2012).
doi: 10.1073/pnas.1204593109
Blum, T. B., Hahn, A., Meier, T., Davies, K. M. & Kuhlbrandt, W. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. P Natl Acad Sci USA 116, 4250–4255, https://doi.org/10.1073/pnas.1816556116 (2019).
doi: 10.1073/pnas.1816556116
Wollweber, F., von der Malsburg, K. & van der Laan, M. Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. Bba-Mol Cell Res 1864, 1481–1489, https://doi.org/10.1016/j.bbamcr.2017.05.004 (2017).
doi: 10.1016/j.bbamcr.2017.05.004
Allegretti, M. et al. Horizontal membrane-intrinsic alpha-helices in the stator a-subunit of an F-type ATP synthase. Nature 521, 237–+, https://doi.org/10.1038/nature14185 (2015).
doi: 10.1038/nature14185 pubmed: 25707805
Davies, K. M. et al. Visualization of ATP Synthase Dimers in Mitochondria by Electron Cryo-tomography. Jove-J Vis Exp, https://doi.org/10.3791/51228 (2014).
Daum, B., Walter, A., Horst, A., Osiewacz, H. D. & Kuhlbrandt, W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. P Natl Acad Sci USA 110, 15301–15306, https://doi.org/10.1073/pnas.1305462110 (2013).
doi: 10.1073/pnas.1305462110
He, J. Y. et al. Assembly of the membrane domain of ATP synthase in human mitochondria. P Natl Acad Sci USA 115, 2988–2993, https://doi.org/10.1073/pnas.1722086115 (2018).
doi: 10.1073/pnas.1722086115
Althoff, T., Mills, D. J., Popot, J. L. & Kuhlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. Embo J 30, 4652–4664, https://doi.org/10.1038/emboj.2011.324 (2011).
doi: 10.1038/emboj.2011.324 pubmed: 21909073 pmcid: 3243592
Davies, K. M., Blum, T. B. & Kuhlbrandt, W. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals. yeast, and plants. P Natl Acad Sci USA 115, 3024–3029, https://doi.org/10.1073/pnas.1720702115 (2018).
doi: 10.1073/pnas.1720702115
Guo, R. Y., Gu, J. K., Zong, S., Wu, M. & Yang, M. J. Structure and mechanism of mitochondrial electron transport chain. Biomed J 41, 9–20, https://doi.org/10.1016/j.bj.2017.12.001 (2018).
doi: 10.1016/j.bj.2017.12.001 pubmed: 29673555 pmcid: 6138618
Cogliati, S. et al. Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency. Cell 155, 160–171, https://doi.org/10.1016/j.cell.2013.08.032 (2013).
doi: 10.1016/j.cell.2013.08.032 pubmed: 24055366 pmcid: 3790458
Murphy, B. J. et al. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F-1-F-o coupling. Science 364, 1155–+, https://doi.org/10.1126/science.aaw9128 (2019).
doi: 10.1126/science.aaw9128
Hahn, A. et al. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 63, 445–456, https://doi.org/10.1016/j.molcel.2016.05.037 (2016).
doi: 10.1016/j.molcel.2016.05.037 pubmed: 27373333 pmcid: 4980432
Baker, L. A., Watt, I. N., Runswick, M. J., Walker, J. E. & Rubinstein, J. L. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. P Natl Acad Sci USA 109, 11675–11680, https://doi.org/10.1073/pnas.1204935109 (2012).
doi: 10.1073/pnas.1204935109
Palade, G. E. An Electron Microscope Study of the Mitochondrial Structure. J Histochem Cytochem 1, 188–211, https://doi.org/10.1177/1.4.188 (1953).
doi: 10.1177/1.4.188 pubmed: 13069686
Lee, J. Proton-electrostatics hypothesis for localized proton coupling bioenergetics. Bioenergetics 1(104), 1–8, https://doi.org/10.4172/2167-7662.1000104 (2012).
doi: 10.4172/2167-7662.1000104
Lee, J. Proton-electrostatic localization: explaining the bioenergetic conundrum in alkalophilic bacteria. Bioenergetics 4(121), 1–8, https://doi.org/10.4172/2167-7662.1000121 (2015).
doi: 10.4172/2167-7662.1000121
Lee, J. W. Electrostatically localized proton bioenergetics: better understanding membrane potential. Heliyon 5, e01961, https://doi.org/10.1016/j.heliyon.2019.e01961 (2019).
doi: 10.1016/j.heliyon.2019.e01961 pubmed: 31367684 pmcid: 6646885
Lee, J. W. A possible electrostatic interpretation for proton localization and delocalization in chloroplast bioenergetics system. Biophysical Journal 88, 324a–325a (2005).
Lee, J. W. Localized excess protons and methods of making and using same. USA patent No. US 10,501,854 B2 (2019).
Xiong, J. W., Zhu, L. P., Jiao, X. M. & Liu, S. S. Evidence for Delta pH surface component (Delta pH(S)) of proton motive force in ATP synthesis of mitochondria. Bba-Gen Subjects 1800, 213–222, https://doi.org/10.1016/j.bbagen.2009.07.032 (2010).
doi: 10.1016/j.bbagen.2009.07.032
Rieger, B., Junge, W. & Busch, K. B. Lateral pH gradient between OXPHOS complex IV and F0F1 ATP-synthase in folded mitochondrial membranes. Nat Commun 5, https://doi.org/10.1038/ncomms4103 (2014).
Saeed, H. A. & Lee, J. W. Experimental Demonstration of Localized Excess Protons at a Water-Membrane Interface. Bioenergetics 4(127), 1–7, https://doi.org/10.4172/2167-7662.1000127 (2015).
doi: 10.4172/2167-7662.1000127
Chiang, G. G. & Dilley, R. A. Intact Chloroplasts Show Ca-2+-Gated Switching between Localized and Delocalized Proton Gradient Energy Coupling (Atp Formation). Plant Physiol 90, 1513–1523, 10.1104/pp.90.4.1513 (1989).
Weichselbaum, E. et al. Origin of proton affinity to membrane/water interfaces. Sci Rep-Uk 7, https://doi.org/10.1038/s41598-017-04675-9 (2017).
Zhang, C. et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proceedings of the National Academy of Sciences 109, 9744–9749, https://doi.org/10.1073/pnas.1121227109 (2012).
doi: 10.1073/pnas.1121227109
Morelli, A. M., Ravera, S., Calzia, D. & Panfoli, I. An update of the chemv https://doi.org/10.1098/rsob.180221 (2019).
Saeed, H. & Lee, J. Experimental determination of proton-cation exchange equilibrium constants at water-membrane interface fundamental to bioenergetics. WATER Journal: Multidisciplinary Research Journal 9, 116–140, https://doi.org/10.14294/WATER.2018.2 (2018).
doi: 10.14294/WATER.2018.2
Lee, J. Localized excess protons and methods of making and using the same, PCT International Patent Application Publication No. WO 2017/007762 A1., 56 pages (2017).
Guffanti, A. & Krulwich, T. Bioenergetic problems of alkalophilic bacteria. Biochem Soc T 12, 411 (1984).
doi: 10.1042/bst0120411
Krulwich, T. A., Gilmour, R., Hicks, D. B., Guffanti, A. A. & Ito, M. Energetics of alkaliphilic Bacillus species: physiology and molecules. Advances in microbial physiology 40, 401–438 (1998).
doi: 10.1016/S0065-2911(08)60136-8
Krulwich, T. A. et al. Adaptive mechanisms of extreme alkaliphiles. Extremophiles handbook, 119-139 (2011).
Meier, T. et al. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 65, 1181–1192, https://doi.org/10.1111/j.1365-2958.2007.05857.x (2007).
doi: 10.1111/j.1365-2958.2007.05857.x pubmed: 17645441
Krulwich, T. A. Bioenergetics of alkalophilic bacteria. The Journal of membrane biology 89, 113–125 (1986).
doi: 10.1007/BF01869707
Krulwich, T. A. & Guffanti, A. A. Alkalophilic bacteria. Annual Reviews in Microbiology 43, 435–463 (1989).
doi: 10.1146/annurev.mi.43.100189.002251
Olsson, K., Keis, S., Morgan, H. W., Dimroth, P. & Cook, G. M. Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2. A1. J Bacteriol 185, 461–465 (2003).
doi: 10.1128/JB.185.2.461-465.2003
McLaughlin, S. The Electrostatic Properties of Membranes. Annual Review of Biophysics and Biophysical Chemistry 18, 113–136, https://doi.org/10.1146/annurev.bb.18.060189.000553 (1989).
doi: 10.1146/annurev.bb.18.060189.000553 pubmed: 2660821
Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chemical reviews 41, 441–501 (1947).
doi: 10.1021/cr60130a002
Krulwich, T. A., Hicks, D. B., Swartz, T. & Ito, M. in Physiology and Biochemistry of Extremophiles (American Society of Microbiology (2007).
Haiens, T. H. & Dencher, N. A. Cardiolipin: a proton trap for oxidative phosphorylation. Febs Lett 528, 35–39, https://doi.org/10.1016/S0014-5793(02)03292-1 (2002).
doi: 10.1016/S0014-5793(02)03292-1
Liu, J. et al. Cardiolipin Is Dispensable for Oxidative Phosphorylation and Non-fermentative Growth of Alkaliphilic Bacillus pseudofirmus OF4. J Biol Chem 289, 2960–2971, https://doi.org/10.1074/jbc.M113.536193 (2014).
doi: 10.1074/jbc.M113.536193 pubmed: 24338478
Lee, J. W. Membrane surface charges attracted protons are not relevant to proton motive force. Bioenergetics 2, e114, https://doi.org/10.4172/2167-7662.1000e114 (2013).
doi: 10.4172/2167-7662.1000e114
Lee, J. Localized excess protons and methods of making and using the same. United States Patent Application Publication No. US 20170009357 A1, 73pp. (2017).
Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).
doi: 10.1038/17579
Pomès, R. & Roux, B. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophysical journal 82, 2304–2316 (2002).
doi: 10.1016/S0006-3495(02)75576-8
Marx, D. Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. Chemphyschem 7, 1848–1870 (2006).
doi: 10.1002/cphc.200600128
Ohanian, H. C. in Physics Ch. 24, 565–573 (W. W. Norton & Company (1985).
Saeed, H. Bioenergetics: Experimental Demonstration of Excess Protons and Related Features. PhD Thesis, Old Dominion University, Norfolk, VA 23529 USA (2016).
Nicholls, D. G. & Ferguson, S. J. in Bioenergetics (Fourth Edition) 27-51 (Academic Press (2013).
Mitchell, P. & Moyle, J. Estimation of Membrane Potential and pH Difference across the Cristae Membrane of Rat Liver Mitochondria. Eur J Biochem 7, 471–484, https://doi.org/10.1111/j.1432-1033.1969.tb19633.x (1969).
doi: 10.1111/j.1432-1033.1969.tb19633.x pubmed: 5776240
Chinopoulos, C. et al. A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT. Biophysical Journal 96, 2490–2504, https://doi.org/10.1016/j.bpj.2008.12.3915 (2009).
doi: 10.1016/j.bpj.2008.12.3915 pubmed: 19289073 pmcid: 2907717
Mannella, C. A., Lederer, W. J. & Jafri, M. S. The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62, 51–57, https://doi.org/10.1016/j.yjmcc.2013.05.001 (2013).
doi: 10.1016/j.yjmcc.2013.05.001 pubmed: 23672826 pmcid: 4219563
Zheng, Y., Shojaei-Baghini, E., Wang, C. & Sun, Y. Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells. Biosens Bioelectron 42, 496–502, https://doi.org/10.1016/j.bios.2012.10.081 (2013).
doi: 10.1016/j.bios.2012.10.081 pubmed: 23246657
Pinevich, A. V. Intracytoplasmic membrane structures in bacteria. Endocytobiosis Cell 12, 9–40 (1997).
Kopek, B. G., Shtengel, G., Xu, C. S., Clayton, D. A. & Hess, H. F. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. P Natl Acad Sci USA 109, 6136–6141, https://doi.org/10.1073/pnas.1121558109 (2012).
doi: 10.1073/pnas.1121558109
Dlaskova, A. et al. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Bba-Bioenergetics 1860, 659–678, https://doi.org/10.1016/j.bbabio.2019.06.015 (2019).
doi: 10.1016/j.bbabio.2019.06.015 pubmed: 31247171
Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci Rep-Uk 9, https://doi.org/10.1038/s41598-019-48838-2 (2019).
Gu, J. K. et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 364, 1068–+, https://doi.org/10.1126/science.aaw4852 (2019).
doi: 10.1126/science.aaw4852 pubmed: 31197009
McDonald, K. T. Conducting Ellipsoid and Circular Disk. http://physics.princeton.edu/~mcdonald/examples/ellipsoid.pdf , 1-6 (2002).
Strauss, M., Hofhaus, G., Schroeder, R. R. & Kuhlbrandt, W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. Embo J 27, 1154–1160, https://doi.org/10.1038/emboj.2008.35 (2008).
doi: 10.1038/emboj.2008.35 pubmed: 18323778 pmcid: 2323265
Cherepanov, D. A., Feniouk, B. A., Junge, W. & Mulkidjanian, A. Y. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophysical Journal 85, 1307–1316, https://doi.org/10.1016/S0006-3495(03)74565-2 (2003).
doi: 10.1016/S0006-3495(03)74565-2 pubmed: 12885673 pmcid: 1303247
Mulkidjanian, A. Y., Heberle, J. & Cherepanov, D. A. Protons @ interfaces: Implications for biological energy conversion. Bba-Bioenergetics 1757, 913–930, https://doi.org/10.1016/j.bbabio.2006.02.015 (2006).
doi: 10.1016/j.bbabio.2006.02.015 pubmed: 16624250

Auteurs

James Weifu Lee (JW)

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA. jwlee@odu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH