Hybrid Modelling of Transarterial Chemoembolisation Therapies (TACE) for Hepatocellular Carcinoma (HCC).
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 06 2020
29 06 2020
Historique:
received:
03
07
2019
accepted:
09
03
2020
entrez:
1
7
2020
pubmed:
1
7
2020
medline:
16
1
2021
Statut:
epublish
Résumé
We extend an agent-based multiscale model of vascular tumour growth and angiogenesis to describe transarterial chemoembolisation (TACE) therapies. The model accounts for tumour and normal cells that are both nested in a vascular system that changes its structure according to tumour-related growth factors. Oxygen promotes nutrients to the tissue and determines cell proliferation or death rates. Within the extended model TACE is included as a two-step process: First, the purely mechanical influence of the embolisation therapy is modelled by a local occlusion of the tumour vasculature. There we distinguish between partial and complete responders, where parts of the vascular system are occluded for the first and the whole tumour vasculature is destroyed for the latter. In the second part of the model, drug eluding beads (DEBs) carrying the chemotherapeutic drug doxorubicin are located at destroyed vascular locations, releasing the drug over a certain time-window. Simulation results are parameterised to qualitatively reproduce clinical observations. Patients that undergo a TACE-treatment are categorised in partial and complete responders one day after the treatment. Another 90 days later reoccurance or complete response are detected by volume perfusion computer tomography (VPCT). Our simulations reveal that directly after a TACE- treatment an unstable tumour state can be observed, where regrowth and total tumour death have the same likeliness. It is argued that this short time-window is favorable for another therapeutical intervention with a less radical therapy. This procedure can shift the outcome to more effectiveness. Simulation results with an oxygen therapy within the unstable time-window demonstrate a potentially positive manipulated outcome. Finally, we conclude that our TACE model can motivate new therapeutical strategies and help clinicians analyse the intertwined relations and cross-links in tumours.
Identifiants
pubmed: 32601310
doi: 10.1038/s41598-020-65012-1
pii: 10.1038/s41598-020-65012-1
pmc: PMC7324576
doi:
Substances chimiques
Doxorubicin
80168379AG
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10571Références
Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. The oncologist 15, 5–13 (2010).
doi: 10.1634/theoncologist.2010-S4-05
Dhanasekaran, R., Limaye, A. & Cabrera, R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepatic medicine: evidence research 4, 19 (2012).
Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).
doi: 10.1016/S0140-6736(18)30010-2
Lanza, E. et al. Transarterial therapies for hepatocellular carcinoma. Liver cancer 6, 27–33 (2017).
doi: 10.1159/000449347
Shin, S. W. The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean journal radiology 10, 425–434 (2009).
doi: 10.3348/kjr.2009.10.5.425
Park, Y. N. et al. Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver. The Am. journal surgical pathology 22, 656–662 (1998).
doi: 10.1097/00000478-199806000-00002
Sigurdson, E. R., Ridge, J. A., Kemeny, N. & Daly, J. M. Tumor and liver drug uptake following hepatic artery and portal vein infusion. J. Clin. Oncol. 5, 1836–1840 (1987).
doi: 10.1200/JCO.1987.5.11.1836
Gao, S., Yang, R.-J. & Dong, J.-H. Hepatocellular carcinoma with blood supply from parasitized omental artery: Angiographic appearance and chemoembolization. Chin. J. Cancer Res. 24, 207–212 (2012).
doi: 10.1007/s11670-012-0207-7
Facciorusso, A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: Current state of the art. World journal gastroenterology 24, 161 (2018).
doi: 10.3748/wjg.v24.i2.161
Brown, K. T. et al. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J. Clin. Oncol. 34, 2046–2053 (2016).
doi: 10.1200/JCO.2015.64.0821
Llovet, J. et al. Arterial embolization or chemoembolization versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomized controlled trial. Lancet 59, 1734–9 (2002).
doi: 10.1016/S0140-6736(02)08649-X
Lo, C. et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatol. 35, 1164–71 (2002).
doi: 10.1053/jhep.2002.33156
Llovet, J. & Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatol. 37, 429–42 (2003).
doi: 10.1053/jhep.2003.50047
Liapi, E. & Geschwind, J.-F. H. Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization? Cardiovasc. interventional radiology 34, 37–49 (2011).
doi: 10.1007/s00270-010-0012-y
Llovet, J. M. et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. The Lancet 359, 1734–1739 (2002).
doi: 10.1016/S0140-6736(02)08649-X
Fako, V. & Wang, X. W. The status of transarterial chemoembolization treatment in the era of precision oncology. Hepatic oncology 4, 55–63 (2017).
doi: 10.2217/hep-2017-0009
Owen, M., Alarcón, T., Maini, P. & Byrne, H. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–722 (2009).
doi: 10.1007/s00285-008-0213-z
Owen, M. et al. Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res. 71, 2826 (2011).
doi: 10.1158/0008-5472.CAN-10-2834
Perfahl, H. et al. Multiscale modelling of vascular tumour growth in 3d: the roles of domain size and boundary conditions. PLoS One 6, e14790 (2011).
doi: 10.1371/journal.pone.0014790
Byrne, H. M. Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221 (2010).
doi: 10.1038/nrc2808
Campbell, A., Sivakumaran, T., Davidson, M., Lock, M. & Wong, E. Mathematical modeling of liver metastases tumour growth and control with radiotherapy. Phys. Medicine & Biol. 53, 7225 (2008).
doi: 10.1088/0031-9155/53/24/015
Cosse, J.-P. & Michiels, C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-Cancer Agents Medicinal Chem. (Formerly Curr. Medicinal Chem. Agents) 8, 790–797 (2008).
doi: 10.2174/187152008785914798
Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Reviews Cancer 3, 401–410 (2003).
doi: 10.1038/nrc1093
Goel, H. L. & Mercurio, A. M. VEGF targets the tumour cell. Nat. Rev. Cancer 13, 871 (2013).
doi: 10.1038/nrc3627
Sia, D., Alsinet, C., Newell, P. & Villanueva, A. VEGF signaling in cancer treatment. Curr. Pharmaceutical Design 20, 2834–2842 (2014).
doi: 10.2174/13816128113199990590
Moen, I. & Stuhr, L. E. Hyperbaric oxygen therapy and cancer? A review. Target. oncology 7, 233–242 (2012).
doi: 10.1007/s11523-012-0233-x
Heyboer, M. III., Sharma, D., Santiago, W. & McCulloch, N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv. wound care 6, 210–224 (2017).
doi: 10.1089/wound.2016.0718
Elas, M. et al. Quantitative tumor oxymetric images from 4d electron paramagnetic resonance imaging (epri): Methodology and comparison with blood oxygen level-dependent (bold) mri. Magn. resonance medicine 49, 682–691 (2003).
doi: 10.1002/mrm.10408
Lencioni, R. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the space trial. J. Hepatology 64, 1090–1098 (2016).
doi: 10.1016/j.jhep.2016.01.012
Erhardt, A. et al. TACE plus sorafenib for the treatment of hepatocellular carcinoma: results of the multicenter, phase ii socrates trial. Cancer Chemotherapy Pharmacology 74, 947–954 (2014).
doi: 10.1007/s00280-014-2568-8
Meyer, T. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. The Lancet Gastroenterol. & Hepatol 2, 565–575 (2017).
doi: 10.1016/S2468-1253(17)30156-5
Siemann, D. W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer treatment reviews 37, 63–74 (2011).
doi: 10.1016/j.ctrv.2010.05.001
Alarcón, T., Byrne, H. M. & Maini, P. K. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theoretical Biology 225, 257–274 (2003).
doi: 10.1016/S0022-5193(03)00244-3
Alarcón, T., Byrne, H. & Maini, P. A multiple scale model for tumour growth. Multiscale Model. Simul. 3, 440–475 (2005).
doi: 10.1137/040603760
Alarcón, T., Owen, M. R., Byrne, H. M. & Maini, P. K. Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Medicine 7, 85–119 (2006).
Betteridge, R., Owen, M. R., Byrne, H. M., Alarcón, T. & Maini, P. K. The impact of cell crowding and active cell movement in vascular tumour growth. Networks Heterog. Media 1, 515–535 (2006).
doi: 10.3934/nhm.2006.1.515
Owen, M. R., Alarcón, T., Maini, P. K. & Byrne, H. M. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009).
doi: 10.1007/s00285-008-0213-z
Weinberg, B. D., Patel, R. B., Exner, A. A., Saidel, G. M. & Gao, J. Modeling doxorubicin transport to improve intratumoral drug delivery to RF ablated tumors. J. Control. Release 124, 11–19 (2007).
doi: 10.1016/j.jconrel.2007.08.023