Quantifying solvent action in oil paint using portable laser speckle imaging.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 Jun 2020
Historique:
received: 11 02 2020
accepted: 26 05 2020
entrez: 1 7 2020
pubmed: 1 7 2020
medline: 1 7 2020
Statut: epublish

Résumé

The exposure of oil paintings to organic solvents for varnish removal or to water for the removal of surface dirt can affect the chemical and physical properties of oil paint in an undesired way. Solvents can temporarily plasticise and swell the polymerised oil paint binding medium, enhancing both the thermal mobility and mechanical displacement of pigments embedded in this film. The enhancement of these microscopic motions can affect both the chemical and physical stability of the object as a whole. In order to minimise solvent exposure during cleaning, an analytical method that can quantitatively measure the microscopic motions induced by solvent uptake, is required first. In this study, we use Fourier Transform Laser Speckle Imaging (FT-LSI) and a newly developed portable FT-LSI setup as highly resolved motion detection instruments. We employ FT-LSI to probe pigment motion, with high spatiotemporal resolution, as a proxy for the destabilising effects of cleaning solvents. In this way, we can study solvent diffusion and evaporation rates and the total solvent retention time. In addition, qualitative spatial information on the spreading and homogeneity of the applied solvent is obtained. We study mobility in paint films caused by air humidity, spreading of solvents as a result of several cleaning methods and the protective capabilities of varnish. Our results show that FT-LSI is a powerful technique for the study of solvent penetration during oil paint cleaning and has a high potential for future use in the conservation studio.

Identifiants

pubmed: 32601362
doi: 10.1038/s41598-020-67115-1
pii: 10.1038/s41598-020-67115-1
pmc: PMC7324590
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10574

Références

Ruhemann, H. & Plesters, J. The cleaning of paintings; problems and potentialities; (Faber, London, 1968).
Stoner, J. H. & Rushfield, R. A. The conservation of easel paintings (Routledge London, 2012).
Phenix, A. & Sutherland, K. The cleaning of paintings: effects of organic solvents on oil paint films. Studies in Conservation 46, 47–60, https://doi.org/10.1179/sic.2001.46.Supplement-1.47 (2001).
doi: 10.1179/sic.2001.46.Supplement-1.47
Mecklenburg, M. F., Charola, A. E. & Koestler, R. J. New Insights into the Cleaning of Paintings: Proceedings from the Cleaning 2010 International Conference, Universidad Politécnica de Valencia and Museum Conservation Institute. Smithsonian Contributions to Museum Conservation 3, 1–243, https://doi.org/10.5479/si.19492359.3.1 (2013).
doi: 10.5479/si.19492359.3.1
Baij, L., Hermans, J., Ormsby, B., Noble, P., Iedema, P., & Keune, K. (2020). A review of solvent action on oil paint. Heritage Science, 8(1), 43, https://doi.org/10.1186/s40494-020-00388-x
Hedley, G., Odlyha, M., Burnstock, A., Tillinghast, J. & Husband, C. A study of the mechanical and surface properties of oil paint films treated with organic solvents and water. Studies in Conservation 35, 98–105, https://doi.org/10.1179/sic.1990.35.s1.022 (1990).
doi: 10.1179/sic.1990.35.s1.022
Fife, G. R. et al. Characterization of aging and solvent treatments of painted surfaces using single-sided NMR. Magnetic Resonance in Chemistry 53, 58–63, https://doi.org/10.1002/mrc.4164 (2015).
doi: 10.1002/mrc.4164 pubmed: 25332115
Erhardt, D. & Tsang, J.-S. The extractable components of oil paint films. Studies in Conservation 35, 93–97, https://doi.org/10.1179/sic.1990.35.s1.021 (1990).
doi: 10.1179/sic.1990.35.s1.021
van den Berg, J. D., van den Berg, K. J. & Boon, J. J. Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry. Journal of Chromatography A 950, 195–211, https://doi.org/10.1016/S0021-9673(02)00049-3 (2002).
doi: 10.1016/S0021-9673(02)00049-3 pubmed: 11990993
Sutherland, K. Solvent-Extractable Components of Linseed Oil Paint Films. Studies in conservation 48, 111–135 (2003).
doi: 10.1179/sic.2003.48.2.111
Spyros, A. & Anglos, D. Study of aging in oil paintings by 1D and 2D NMR spectroscopy. Analytical Chemistry 76, 4929–4936, https://doi.org/10.1021/ac049350k (2004).
doi: 10.1021/ac049350k pubmed: 15373425
Spyros, A. & Anglos, D. Studies of organic paint binders by NMR spectroscopy. Applied Physics A: Materials Science and Processing 83, 705–708, https://doi.org/10.1007/s00339-006-3532-1 (2006).
doi: 10.1007/s00339-006-3532-1
Zumbuhl, S., Scherrer, N. C., Engel, N. L. & Muller, W. The kinetics of dissolution of varnishes: The influence of vapour pressure on the rate of solvent action. ICOM-CC, 17th Triennial Conference, Chipperfield 1999, 1–11 (2014).
Casoli, A., Di Diego, Z. & Isca, C. Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues. Environmental Science and Pollution Research 21, 13252–13263, https://doi.org/10.1007/s11356-014-2658-5 (2014).
doi: 10.1007/s11356-014-2658-5 pubmed: 24659401
Baij, L. et al. Solvent-mediated extraction of fatty acids in bilayer oil paint models: a comparative analysis of solvent application methods. Heritage Science 7, 31, https://doi.org/10.1186/s40494-019-0273-y (2019).
doi: 10.1186/s40494-019-0273-y
Baij, L., Hermans, J. J., Keune, K. & Iedema, P. Time-Dependent ATR-FTIR Spectroscopic Studies on Fatty Acid Diffusion and the Formation of Metal Soaps in Oil Paint Model Systems. Angewandte Chemie International Edition 57, 7351–7354, https://doi.org/10.1002/anie.201712751 (2018).
doi: 10.1002/anie.201712751 pubmed: 29411920
Kahrim, K. et al. The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC-MS analysis to monitor and evaluate painting cleaning. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 74, 1182–1188, https://doi.org/10.1016/j.saa.2009.08.051 (2009).
doi: 10.1016/j.saa.2009.08.051
Baglioni, P., Baglioni, M., Bonelli, N., Chelazzi, D. & Giorgi, R. Smart Soft Nanomaterials for Cleaning. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage, 171–204, https://doi.org/10.1016/B978-0-12-813910-3.00009-4 (Elsevier, Dordrecht, 2019).
Angelova, L. V., Ormsby, B., Townsend, J. & Wolbers, R. (eds.) Gels in the conservation of art (Archetype Publications, London, 2018).
Foster, G. M., Ritchie, S. & Lowe, C. Controlled temperature and relative humidity dynamic mechanical analysis of paint films. Journal of Thermal Analysis and Calorimetry 73, 119–126, https://doi.org/10.1023/A:1025133508109 (2003).
doi: 10.1023/A:1025133508109
Ormsby, B., Foster, G., Learner, T., Ritchie, S. & Schilling, M. Improved controlled relative humidity dynamic mechanical analysis of artists’ acrylic emulsion paints: Part II. General properties and accelerated ageing. Journal of Thermal Analysis and Calorimetry 90, 503–508, https://doi.org/10.1007/s10973-006-7725-9 (2007).
doi: 10.1007/s10973-006-7725-9
Michalski, S. Paintings–Their Response to Temperature, Relative Humidity, Shock, and Vibration. Art in Transit: Studies in the Transport of Paintings 223–248 (1991).
Monico, L. et al. Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 1. Artificially Aged Model Samples. Analytical Chemistry 83, 1214–1223, https://doi.org/10.1021/ac102424h (2011).
doi: 10.1021/ac102424h pubmed: 21314201
Stolow, N. The action of solvents on drying-oil films: parts I and II. Journal of the Oil and Colour Chemists’ Association 40, 377–402 (1957).
Phenix, A. The Swelling of Artists’ Paints in Organic Solvents. Part 1, a Simple Method for Measuring the In-Plane Swelling of Unsupported Paint Films. Journal of the American Institute for Conservation 41, 43, https://doi.org/10.2307/3179896 (2002).
doi: 10.2307/3179896
Phenix, A. The Swelling of Artists’ Paints in Organic Solvents. Part 2, Comparative Swelling Powers of Selected Organic Solvents and Solvent Mixtures. Journal of the American Institute for Conservation 41, 61, https://doi.org/10.2307/3179897 (2002).
doi: 10.2307/3179897
Baij, L., Hermans, J. J., Keune, K. & Iedema, P. D. Time-Dependent ATR-FTIR Spectroscopic Studies on Solvent Diffusion and Film Swelling in Oil Paint Model Systems. Macromolecules 51, 7134–7144, https://doi.org/10.1021/acs.macromol.8b00890 (2018).
doi: 10.1021/acs.macromol.8b00890 pubmed: 30270940 pmcid: 6158679
Masschelein-Kleiner, L. Les solvants. Cours de conservation (Institut royal du patrimoine artistique, Bruxelles, 1994).
Prati, S. et al. Cleaning oil paintings: NMR relaxometry and SPME to evaluate the effects of green solvents and innovative green gels. New Journal of Chemistry 43, 8229–8238, https://doi.org/10.1039/C9NJ00186G (2019).
doi: 10.1039/C9NJ00186G
Blümich, B. et al. The NMR-MOUSE: Construction, excitation, and applications. Magnetic Resonance Imaging 16, 479–484, https://doi.org/10.1016/S0730-725x(98)00069-1 (1998).
doi: 10.1016/S0730-725x(98)00069-1 pubmed: 9803893
Angelova, L. V., Ormsby, B. & Richardson, E. Diffusion of water from a range of conservation treatment gels into paint films studied by unilateral NMR. Microchemical Journal 124, 311–320, https://doi.org/10.1016/j.microc.2015.09.012 (2016).
doi: 10.1016/j.microc.2015.09.012
Fercher, A. & Briers, J. Flow visualization by means of single-exposure speckle photography. Optics Communications 37, 326–330, https://doi.org/10.1016/0030-4018(81)90428-4 (1981).
doi: 10.1016/0030-4018(81)90428-4
van der Kooij, H. M. & Sprakel, J. Watching paint dry; more exciting than it seems. Soft Matter 11, 6353–6359, https://doi.org/10.1039/C5SM01505G (2015).
doi: 10.1039/C5SM01505G pubmed: 26205733
van der Kooij, H. M., Fokkink, R., van der Gucht, J. & Sprakel, J. Quantitative imaging of heterogeneous dynamics in drying and aging paints. Scientific Reports 6, 34383, https://doi.org/10.1038/srep34383 (2016).
doi: 10.1038/srep34383 pubmed: 27682840 pmcid: 5041151
Pérez, A. et al. A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation. Sensors 18, 190, https://doi.org/10.3390/s18010190 (2018).
doi: 10.3390/s18010190
Buijs, J., van der Gucht, J. & Sprakel, J. Fourier transforms for fast and quantitative Laser Speckle Imaging. Scientific Reports 9, 13279, https://doi.org/10.1038/s41598-019-49570-7 (2019).
doi: 10.1038/s41598-019-49570-7 pubmed: 31527699 pmcid: 6746788
Kühn, H. Zinc White. In Feller, R. (ed.) Artist’s pigments: A handbook of their history and characteristics, vol. 1, 169–186 (Cambridge University Press and National Gallery of Art, Cambridge and London, 1986).
Baij, L., Chassouant, L., Hermans, J. J., Keune, K. & Iedema, P. D. The concentration and origins of carboxylic acid groups in oil paint. RSC Advances 9, 35559–35564, https://doi.org/10.1039/C9RA06776K (2019).
doi: 10.1039/C9RA06776K
Hageraats, S. et al. Synchrotron deep-UV photoluminescence imaging for the submicron analysis of chemically altered zinc white oil paints. Analytical Chemistry acs.analchem.9b02443, https://doi.org/10.1021/acs.analchem.9b02443 (2019).
Ankersmit, B. & Stappers, M. H. Managing Indoor Climate Risks in Museums. Cultural Heritage Science (Springer International Publishing, Cham, 2017).
Zumbühl, S. Parametrization of the solvent action on modern artists’ paint systems. Studies in Conservation 59, 24–37, https://doi.org/10.1179/2047058413Y.0000000099 (2014).
doi: 10.1179/2047058413Y.0000000099
Modugno, F. et al. On the influence of relative humidity on the oxidation and hydrolysis of fresh and aged oil paints. Scientific Reports 9, 5533, https://doi.org/10.1038/s41598-019-41893-9 (2019).
doi: 10.1038/s41598-019-41893-9 pubmed: 30940852 pmcid: 6445089
Casadio, F. et al. Metal Soaps in Art: Conservation and Research. Cultural Heritage Science (Springer International Publishing, Cham, 2019).
van der Wel, G. & Adan, O. Moisture in organic coatings - a review. Progress in Organic Coatings 37, 1–14, https://doi.org/10.1016/S0300-9440(99)00058-2 (1999).
doi: 10.1016/S0300-9440(99)00058-2
Michalski, S. A Physical Model Of The Cleaning Of Oil Paint. Studies in Conservation 35, 85–92, https://doi.org/10.1179/sic.1990.35.s1.020 (1990).
doi: 10.1179/sic.1990.35.s1.020
Hermans, J. J., Keune, K., van Loon, A., Corkery, R. W. & Iedema, P. D. Ionomer-like structure in mature oil paint binding media. RSC Advances 6, 93363–93369, https://doi.org/10.1039/C6RA18267D (2016).
doi: 10.1039/C6RA18267D
Hermans, J. J. et al. 2D-IR spectroscopy for oil paint conservation: Elucidating the water-sensitive structure of zinc carboxylate clusters in ionomers. Science Advances 5, eaaw3592, https://doi.org/10.1126/sciadv.aaw3592 (2019).
doi: 10.1126/sciadv.aaw3592 pubmed: 31245541 pmcid: 6588360
Vergeer, M., van den Berg, K. J., van Oudheusden, S. & Stols-Witlox, M. Evolon CR microfibre cloth as a tool for varnish removal. CMOP proceedings, https://doi.org/10.1007/978-3-030-19254-9 (2019).
Arecchi, T. et al. A new tool for painting diagnostics: Optical coherence tomography. Optics and Spectroscopy 101, 23–26, https://doi.org/10.1134/S0030400X06070058 (2006).
doi: 10.1134/S0030400X06070058
Phenix, A. Effects of organic solvents on artists’ oil paint films: swelling. Smithsonian Contributions to Museum Conservation 3, 69–76 (2013).
Prati, S. et al. Sustainability in art conservation: a novel bio-based organogel for the cleaning of water sensitive works of art. Pure and Applied Chemistry 90, 239–251, https://doi.org/10.1515/pac-2017-0507 (2018).
doi: 10.1515/pac-2017-0507
Domingues, J. A. L. et al. Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir 29, 2746–2755, https://doi.org/10.1021/la3048664 (2013).
doi: 10.1021/la3048664 pubmed: 23331023
Fife, G., Och, J. V., Stabik, B., Miedema, N. & Seymour, K. Keywords: paintings, varnish removal, gel impregnated tissues, technique development. ICOM-CC 16th triennial conference Lisbon 19-23 September 2011: preprints (2011).

Auteurs

Lambert Baij (L)

University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, PO box 94720, 1090GD, Amsterdam, The Netherlands. c.l.m.baij@uva.nl.
Rijksmuseum, Conservation and Science, PO box 74888, 1070DN, Amsterdam, The Netherlands. c.l.m.baij@uva.nl.

Jesse Buijs (J)

Wageningen University and Research, Department of Physical Chemistry and Soft Matter, Wageningen, The Netherlands. jesse.buijs@wur.nl.

Joen J Hermans (JJ)

University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, PO box 94720, 1090GD, Amsterdam, The Netherlands.
Rijksmuseum, Conservation and Science, PO box 74888, 1070DN, Amsterdam, The Netherlands.

Laura Raven (L)

Rijksmuseum, Conservation and Science, PO box 74888, 1070DN, Amsterdam, The Netherlands.

Piet D Iedema (PD)

University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, PO box 94720, 1090GD, Amsterdam, The Netherlands.

Katrien Keune (K)

University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, PO box 94720, 1090GD, Amsterdam, The Netherlands.
Rijksmuseum, Conservation and Science, PO box 74888, 1070DN, Amsterdam, The Netherlands.

Joris Sprakel (J)

Wageningen University and Research, Department of Physical Chemistry and Soft Matter, Wageningen, The Netherlands.

Classifications MeSH