Removal of an abluminal lining improves decellularization of human umbilical arteries.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 06 2020
29 06 2020
Historique:
received:
19
12
2019
accepted:
02
06
2020
entrez:
1
7
2020
pubmed:
1
7
2020
medline:
16
1
2021
Statut:
epublish
Résumé
The decellularization of long segments of tubular tissues such as blood vessels may be improved by perfusing decellularization solution into their lumen. Particularly, transmural flow that may be introduced by the perfusion, if any, is beneficial to removing immunogenic cellular components in the vessel wall. When human umbilical arteries (HUAs) were perfused at a transmural pressure, however, very little transmural flow was observed. We hypothesized that a watertight lining at the abluminal surface of HUAs hampered the transmural flow and tested the hypothesis by subjecting the abluminal surface to enzyme digestion. Specifically, a highly viscous collagenase solution was applied onto the surface, thereby restricting the digestion to the surface. The localized digestion resulted in a water-permeable vessel without damaging the vessel wall. The presence of the abluminal lining and its successful removal were also supported by evidence from SEM, TEM, and mechanical testing. The collagenase-treated HUAs were decellularized with 1% sodium dodecyl sulfate (SDS) solution under either rotary agitation, simple perfusion, or pressurized perfusion. Regardless of decellularization conditions, the decellularization of HUAs was significantly enhanced after the abluminal lining removal. Particularly, complete removal of DNA was accomplished in 24 h by pressurized perfusion of the SDS solution. We conclude that the removal of the abluminal lining can improve the perfusion-assisted decellularization.
Identifiants
pubmed: 32601366
doi: 10.1038/s41598-020-67417-4
pii: 10.1038/s41598-020-67417-4
pmc: PMC7324607
doi:
Substances chimiques
Sodium Dodecyl Sulfate
368GB5141J
DNA
9007-49-2
Collagenases
EC 3.4.24.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10556Références
Herrington, W., Lacey, B., Sherliker, P., Armitage, J. & Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 118, 535–546. https://doi.org/10.1161/Circresaha.115.307611 (2016).
doi: 10.1161/Circresaha.115.307611
pubmed: 26892956
Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56. https://doi.org/10.1038/s41572-019-0116-x (2019).
doi: 10.1038/s41572-019-0116-x
pubmed: 31420554
Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update a report from the American Heart Association. Circulation 135, E146–E603. https://doi.org/10.1161/Cir.0000000000000485 (2017).
doi: 10.1161/Cir.0000000000000485
pubmed: 28122885
pmcid: 5408160
Youngstrom, D. W., Barrett, J. G., Jose, R. R. & Kaplan, D. L. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS ONE 8, 1 (2013).
doi: 10.1371/journal.pone.0064151
Grayson, W. L. et al. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107, 3299–3304 (2010).
doi: 10.1073/pnas.0905439106
Hudson, T. W. et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 10, 1641–1651 (2004).
doi: 10.1089/ten.2004.10.1641
Elkins, R. C., Dawson, P. E., Goldstein, S., Walsh, S. P. & Black, K. S. Decellularized human valve allografts. Ann. Thorac. Surg. 71, S428–S432 (2001).
doi: 10.1016/S0003-4975(01)02503-6
Cho, S. W. et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241, 506–515. https://doi.org/10.1097/01.sla.0000154268.12239.ed (2005).
doi: 10.1097/01.sla.0000154268.12239.ed
pubmed: 15729075
pmcid: 1356991
Xiong, Y. et al. Decellularized porcine saphenous artery for small-diameter tissue-engineered conduit graft. Artif. Organs 37, E74–E87. https://doi.org/10.1111/Aor.12014 (2013).
doi: 10.1111/Aor.12014
pubmed: 23566255
Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057 (2011).
doi: 10.1016/j.biomaterials.2011.01.057
pubmed: 21296410
pmcid: 3084613
Dahl, S. L. M., Koh, J., Prabhakar, V. & Niklason, L. E. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12, 659–666 (2003).
doi: 10.3727/000000003108747136
Rieder, E. et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 127, 399–405. https://doi.org/10.1016/j.jtcvs.2003.06.017 (2004).
doi: 10.1016/j.jtcvs.2003.06.017
pubmed: 14762347
Kerdjoudj, H. et al. Decellularized umbilical artery treated with thin polyelectrolyte multilayer films: potential use in vascular engineering. Bio-Med. Mater. Eng. 16, S123–S129 (2006).
Chen, F. M. & Liu, X. H. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53, 86–168 (2016).
doi: 10.1016/j.progpolymsci.2015.02.004
Londono, R. & Badylak, S. F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Eng. 43, 577–592. https://doi.org/10.1007/s10439-014-1103-8 (2015).
doi: 10.1007/s10439-014-1103-8
pubmed: 25213186
Dahl, S. L. M., Rhim, C., Song, Y. C. & Niklason, L. E. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35, 348–355 (2007).
doi: 10.1007/s10439-006-9226-1
Daniel, J., Abe, K. & McFetridge, P. S. Development of the human umbilical vein scaffold for cardiovascular tissue engineering applications. ASAIO J. 51, 252–261. https://doi.org/10.1097/01.Mat.0000160872.41871.7e (2005).
doi: 10.1097/01.Mat.0000160872.41871.7e
pubmed: 15968956
Dahan, N. et al. Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue Eng. Part A 18, 411–422 (2012).
doi: 10.1089/ten.tea.2011.0173
Gui, L. Q., Muto, A., Chan, S. A., Breuer, C. K. & Niklason, L. E. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng. Part A 15, 2665–2676. https://doi.org/10.1089/ten.tea.2008.0526 (2009).
doi: 10.1089/ten.tea.2008.0526
pubmed: 19207043
pmcid: 2735599
Hoenicka, M., Lehle, K., Jacobs, V. R., Schmid, F. X. & Birnbaum, D. E. Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft. Tissue Eng. 13, 219–229. https://doi.org/10.1089/ten.2006.0121 (2007).
doi: 10.1089/ten.2006.0121
pubmed: 17518595
Montoya, C. V. & McFetridge, P. S. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng. Part C-Methods 15, 191–200. https://doi.org/10.1089/ten.tec.2008.0372 (2009).
doi: 10.1089/ten.tec.2008.0372
pubmed: 19196128
pmcid: 2819706
Tuan-Mu, H. Y., Yu, C. H. & Hu, J. J. On the decellularization of fresh or frozen human umbilical arteries: implications for small-diameter tissue engineered vascular grafts. Ann. Biomed. Eng. 42, 1305–1318. https://doi.org/10.1007/s10439-014-1000-1 (2014).
doi: 10.1007/s10439-014-1000-1
pubmed: 24682764
Hu, J. J. et al. Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J. Histochem. Cytochem. 56, 359–370 (2008).
doi: 10.1369/jhc.7A7324.2007
Hu, J. J., Chao, W. C., Lee, P. Y. & Huang, C. H. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. J. Mech. Behav. Biomed. Mater. 13, 140–155 (2012).
doi: 10.1016/j.jmbbm.2012.04.013
Gui, L., Chan, S. A., Breuer, C. K. & Niklason, L. E. Novel utilization of serum in tissue decellularization. Tissue Eng. Part C Methods 16, 173–184. https://doi.org/10.1089/ten.TEC.2009.0120 (2010).
doi: 10.1089/ten.TEC.2009.0120
pubmed: 19419244
Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014 (2006).
doi: 10.1016/j.biomaterials.2006.02.014
pubmed: 16519932
Malone, J. M., Brendel, K., Duhamel, R. C. & Reinert, R. L. Detergent-extracted small-diameter vascular prostheses. J. Vasc. Surg. 1, 181–191 (1984).
doi: 10.1016/0741-5214(84)90197-6
Lu, Q. J., Ganesan, K., Simionescu, D. T. & Vyavahare, N. R. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25, 5227–5237. https://doi.org/10.1016/j.biomaterials.2003.12.019 (2004).
doi: 10.1016/j.biomaterials.2003.12.019
pubmed: 15110474
Wilshaw, S. P. et al. Development and characterization of acellular allogeneic arterial matrices. Tissue Eng. Part A 18, 471–483. https://doi.org/10.1089/ten.tea.2011.0287 (2012).
doi: 10.1089/ten.tea.2011.0287
pubmed: 21919791
Funamoto, S. et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31, 3590–3595 (2010).
doi: 10.1016/j.biomaterials.2010.01.073
Yazdani, S. K. et al. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng. Part A 15, 827–840 (2009).
doi: 10.1089/ten.tea.2008.0092
Rogelj, S. et al. Basic fibroblast growth-factor is an extracellular-matrix component required for supporting the proliferation of vascular endothelial-cells and the differentiation of Pc12 cells. J Cell Biol 109, 823–831 (1989).
doi: 10.1083/jcb.109.2.823
Olaya, C. M. et al. The umbilical cord, preeclampsia and the VEGF family. Int. J. Womens Health 10, 783–795. https://doi.org/10.2147/IJWH.S174734 (2018).
doi: 10.2147/IJWH.S174734
Abousleiman, R. I., Reyes, Y., McFetridge, P. & Sikavitsas, V. The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif. Organs 32, 735–742. https://doi.org/10.1111/j.1525-1594.2008.00598.x (2008).
doi: 10.1111/j.1525-1594.2008.00598.x
pubmed: 18684203
Crouzier, T., McClendon, T., Tosun, Z. & McFetridge, P. S. Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration. J. Biomed. Mater. Res., Part A 89A, 818–828. https://doi.org/10.1002/Jbm.A.32103 (2009).
doi: 10.1002/Jbm.A.32103
Rodriguez, M., Juran, C., McClendon, M., Eyadiel, C. & McFetridge, P. S. Development of a mechanically tuneable 3D scaffold for vascular reconstruction. J. Biomed. Mater. Res., Part A 100A, 3480–3489. https://doi.org/10.1002/Jbm.A.34267 (2012).
doi: 10.1002/Jbm.A.34267
Shimizu, K. et al. Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J. Biosci. Bioeng. 103, 472–478. https://doi.org/10.1263/Jbb.103.472 (2007).
doi: 10.1263/Jbb.103.472
pubmed: 17609164