Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 06 2020
Historique:
received: 22 01 2020
accepted: 19 05 2020
entrez: 1 7 2020
pubmed: 1 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

eDNA refers to DNA extracted from an environmental sample with the goal of identifying the occurrence of past or current biological communities in aquatic and terrestrial environments. However, there is currently a lack of knowledge regarding the soil memory effect and its potential impact on lake sediment eDNA records. To investigate this issue, two contrasted sites located in cultivated environments in France were studied. In the first site, soil samples were collected (n = 30) in plots for which the crop rotation history was documented since 1975. In the second site, samples were collected (n = 40) to compare the abundance of currently observed taxa versus detected taxa in cropland and other land uses. The results showed that the last cultivated crop was detected in 100% of the samples as the most abundant. In addition, weeds were the most abundant taxa identified in both sites. Overall, these results illustrate the potential of eDNA analyses for identifying the recent (< 10 years) land cover history of soils and outline the detection of different taxa in cultivated plots. The capacity of detection of plant species grown on soils delivering sediments to lacustrine systems is promising to improve our understanding of sediment transfer processes over short timescales.

Identifiants

pubmed: 32601368
doi: 10.1038/s41598-020-67452-1
pii: 10.1038/s41598-020-67452-1
pmc: PMC7324595
doi:

Substances chimiques

DNA, Environmental 0
DNA, Plant 0
Soil 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10502

Références

Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
doi: 10.1111/j.1365-294X.2012.05542.x
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
doi: 10.1098/rsbl.2008.0118
Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
doi: 10.1016/j.gecco.2019.e00547
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: for biodiversity research and monitoring. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198767220.001.0001 (2018).
doi: 10.1093/oso/9780198767220.001.0001
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).
doi: 10.1111/mec.13428
Scriver, M., Marinich, A., Wilson, C. & Freeland, J. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat. Bot. 122, 27–31 (2015).
doi: 10.1016/j.aquabot.2015.01.003
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
doi: 10.1111/j.1365-294X.2012.05470.x
Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).
doi: 10.1111/j.1365-294X.2012.05545.x
Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).
doi: 10.1371/journal.pone.0088786
Clusa, L. et al. An easy phylogenetically informative method to trace the globally invasive potamopyrgus mud snail from river’s eDNA. PLoS ONE 11, e0162899 (2016).
doi: 10.1371/journal.pone.0162899
Foote, A. D. et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7, e41781 (2012).
doi: 10.1371/journal.pone.0041781
Pansu, J. et al. Long-lasting modification of soil fungal diversity associated with the introduction of rabbits to a remote sub-Antarctic archipelago. Biol. Lett. 11, 20150408 (2015).
doi: 10.1098/rsbl.2015.0408
Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942 (2017).
doi: 10.1111/nph.14470
Sjögren, P. et al. Lake sedimentary DNA accurately records 20th century introductions of exotic conifers in Scotland. New Phytol. 213, 929–941 (2017).
doi: 10.1111/nph.14199
Pietramellara, G. et al. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).
doi: 10.1007/s00374-008-0345-8
Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. The Holocene 26, 627–642 (2016).
doi: 10.1177/0959683615612563
Bremond, L. et al. Five thousand years of tropical lake sediment DNA records from Benin. Quat. Sci. Rev. 170, 203–211 (2017).
doi: 10.1016/j.quascirev.2017.06.025
Ficetola, G. F. et al. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci. Adv. 4, eaar4292 (2018).
doi: 10.1126/sciadv.aar4292
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science. https://doi.org/10.1126/science.aam9695 (2017).
doi: 10.1126/science.aam9695 pubmed: 28450384
Evrard, O. et al. Environmental DNA provides information on sediment sources: a study in catchments affected by Fukushima radioactive fallout. Sci. Total Environ. 665, 873–881 (2019).
doi: 10.1016/j.scitotenv.2019.02.191
Fahner, N. A., Shokralla, S., Baird, D. J. & Hajibabaei, M. Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS ONE 11, e0157505 (2016).
doi: 10.1371/journal.pone.0157505
Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 14676 (2019).
doi: 10.1038/s41598-019-50339-1
Beyaert, R. & Paul Voroney, R. Estimation of decay constants for crop residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Can. J. Soil Sci. 91, 985–995 (2011).
doi: 10.4141/cjss2010-055
Lupwayi, N. Z. et al. Decomposition of crop residues under conventional and zero tillage. Can. J. Soil Sci. 84, 403–410 (2004).
doi: 10.4141/S03-082
Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
doi: 10.1126/science.1159792
Directive, 91/271/EEC Council. 91/271/EEC Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment. 91/271/EEC Counc. Dir. (1991).
Destain, J. P., Reuter, V. & Goffart, J. P. Les cultures intermédiaires pièges à nitrate (CIPAN) et engrais verts: Protection de l’environnement et intérêt agronomique. Biotechnol. Agron. Soc. Environ. 14, 73–78 (2010).
Lecomte, V. & Nolot, J. Place du tournesol dans le système de culture. Innov. Agron. 14, 59–76 (2011).
del Río, J. C. et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60, 5922–5935 (2012).
doi: 10.1021/jf301002n
Fengel, D. & Wegener, G. Wood: Chemistry, Ultrastructure, Reactions (De Gruyter, Berlin, 1983). https://doi.org/10.1515/9783110839654
doi: 10.1515/9783110839654
Pandolfo, C. E. et al. Broad resistance to acetohydroxyacid-synthase-inhibiting herbicides in feral radish (Raphanus sativus L.) populations from Argentina. Pest Manag. Sci. 72, 354–361 (2016).
doi: 10.1002/ps.4006
R4P. Resistance cases to PPPs in France/Cas de résistance aux PPP en France. (2018). https://doi.org/10.17605/OSF.IO/BYV62 .
Foucher, A. et al. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: the application of a thorium-based particle size correction in sediment fingerprinting. Geomorphology 250, 271–281 (2015).
doi: 10.1016/j.geomorph.2015.09.007
Le Gall, M. et al. Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment. Sci. Rep. 7, 42–99 (2017).
doi: 10.1038/s41598-017-00093-z
Foucher, A. et al. Increase in soil erosion after agricultural intensification: evidence from a lowland basin in France. Anthropocene 7, 30–41 (2014).
doi: 10.1016/j.ancene.2015.02.001
Le Gall, M. et al. Quantifying sediment sources in a lowland agricultural catchment pond using 137 Cs activities and radiogenic 87 Sr/ 86 Sr ratios. Sci. Total Environ. 566–567, 968–980 (2016).
doi: 10.1016/j.scitotenv.2016.05.093
Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).
doi: 10.1111/j.1365-294X.2011.05317.x
Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).
doi: 10.1111/mec.13136
Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14–e14 (2007).
doi: 10.1093/nar/gkl938
Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).
doi: 10.1371/journal.pone.0195403
Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).
doi: 10.1111/1755-0998.12338
Boyer, F. et al. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
doi: 10.1111/1755-0998.12428
Ficetola, G. F., Manenti, R. & Taberlet, P. Environmental DNA and metabarcoding for the study of amphibians and reptiles: species distribution, the microbiome, and much more. Amphibia-Reptilia 40, 129–148 (2019).
doi: 10.1163/15685381-20191194
Agency, E. E. CORINE Land Cover 2006. Nor. CLC2006 (2006).

Auteurs

Anthony Foucher (A)

Laboratoire Des Sciences du Climat Et de L'Environnement (LSCE/IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay - Orme Des Merisiers, 91191, Gif-sur-Yvette Cedex, France. Anthony.foucher@outlook.com.

Olivier Evrard (O)

Laboratoire Des Sciences du Climat Et de L'Environnement (LSCE/IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay - Orme Des Merisiers, 91191, Gif-sur-Yvette Cedex, France.

G Francesco Ficetola (GF)

Department of Environmental Science and Policy, Università Degli Studi Di Milano, Milan, Italy.
Laboratoire d'Écologie Alpine, CNRS, Université Grenoble Alpes, Grenoble, France.

Ludovic Gielly (L)

Laboratoire d'Écologie Alpine, CNRS, Université Grenoble Alpes, Grenoble, France.

Julie Poulain (J)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

Charline Giguet-Covex (C)

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Environnements, DYnamiques Et TErritoires de La Montagne), Chambéry, France.

J Patrick Laceby (JP)

Environmental Monitoring and Science Division (EMSD), Alberta Environment and Parks (AEP), Calgary, AB, Canada.

Sébastien Salvador-Blanes (S)

Laboratoire GéoHydrosystèmes Continentaux (GéHCO), E.A 6293, Faculté des Sciences et Techniques, Université F. Rabelais de Tours, Parc de Grandmont, 37200, Tours, France.

Olivier Cerdan (O)

Département Risques et Prévention, Bureau de Recherches Géologiques et Minières (BRGM), 3 avenue Claude Guillemin, 45060, Orléans, France.

Jérôme Poulenard (J)

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Environnements, DYnamiques Et TErritoires de La Montagne), Chambéry, France.

Articles similaires

Humans Male Female Health Knowledge, Attitudes, Practice Middle Aged
Populus Soil Microbiology Soil Microbiota Fungi
Humans Peripheral Arterial Disease Retrospective Studies Male Female
Humans Male Female Intensive Care Units COVID-19

Classifications MeSH