Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
16
09
2019
accepted:
21
04
2020
pubmed:
1
7
2020
medline:
5
2
2021
entrez:
1
7
2020
Statut:
ppublish
Résumé
Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using dual electrocatalysis. Using this strategy, we leverage electrochemistry to seamlessly combine two canonical radical reactions-cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation-to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidants. We also harness electrochemistry's unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis uncovers the origin of enantio-induction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions to direct the enantio-determining C-CN bond formation. This work demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.
Identifiants
pubmed: 32601407
doi: 10.1038/s41557-020-0469-5
pii: 10.1038/s41557-020-0469-5
pmc: PMC7390704
mid: NIHMS1586795
doi:
Substances chimiques
Alkenes
0
Nitriles
0
Cobalt
3G0H8C9362
Carbon
7440-44-0
Copper
789U1901C5
Hydrogen
7YNJ3PO35Z
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
747-754Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM130928
Pays : United States
Références
Rajanbabu, T. V. Hydrocyanation of alkenes and alkynes. Org. React. 75, 1–73 (2011).
Nugent, W. A. & McKinney, R. J. Nickel-catalyzed Markovnikov addition of hydrogen cyanide to olefins. Application to nonsteroidal anti-inflammatories. J. Org. Chem. 50, 5370–5372 (1985).
Gaspar, B. & Carreira, E. M. Mild cobalt-catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. Int. Ed. 46, 4519–4522 (2007).
Fang, X., Yu, P. & Morandi, B. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science 351, 832–836 (2016).
pubmed: 26912891
Pollak, P., Romeder, G., Hagedorn, F. & Gelbke, H. Ullman’s Encyclopedia of Industrial Chemistry 5th edn, Vol. A17 363 (Wiley-VCH, 1985).
Tolman, C. A., McKinney, R. J., Seidel, W. C., Druliner, J. D. & Stevens, W. R. Homogeneous nickel-catalyzed olefin hydrocyanation. Adv. Catal. 33, 1–46 (1985).
RajanBabu, T. V. & Casalnuovo, A. L. Tailored ligands for asymmetric catalysis. J. Am. Chem. Soc. 114, 6265–6266 (1992).
RajanBabu, T. V. & Casalnuovo, A. L. Role of electronic asymmetry in the design of new ligands: the asymmetric hydrocyanation reaction. J. Am. Chem. Soc. 118, 6325–6326 (1996).
Casalnuovo, A. L., RajanBabu, T. V., Ayers, T. A. & Warren, T. Ligand electronic effects in asymmetric catalysis: enhanced enantioselectivity in asymmetric hydrocyanation of vinylarenes. J. Am. Chem. Soc. 116, 9869–9882 (1994).
Kurono, N. & Ohkuma, T. Catalytic asymmetric cyanation reactions. ACS Catal. 6, 989–1023 (2016).
Bini, L., Müller, C. & Vogt, D. Ligand development in the Ni-catalyzed hydrocyanation of alkenes. Chem. Commun. 46, 8325–8334 (2010).
Saha, B. & RajanBabu, T. V. Nickel(0)-catalyzed asymmetric hydrocyanation of 1,3-dienes. Org. Lett. 8, 4657–4659 (2006).
pubmed: 16986974
Falk, A., Göderz, A.-L. & Schmalz, H.-G. Enantioselective nickel-catalyzed hydrocyanation of vinylarenes using chiral phosphine–phosphite ligands and TMS–CN as a source of HCN. Angew. Chem. Int. Ed. 52, 1576–1580 (2013).
Falk, A., Cavalieri, A., Nichol, G. S., Vogt, D. & Schmalz, H.-G. Enantioselective nickel-catalyzed hydrocyanation using chiral phosphine–phosphite ligands: recent improvements and insights. Adv. Synth. Catal. 357, 3317–3320 (2015).
Wilting, J., Janssen, M., Müller, C. & Vogt, D. The enantioselective step in the nickel-catalyzed hydrocyanation of 1,3-cyclohexadiene. J. Am. Chem. Soc. 128, 11374–11375 (2006).
pubmed: 16939259
Li, X. et al. Asymmetric hydrocyanation of alkenes without HCN. Angew. Chem. Int. Ed. 58, 10928–10931 (2019).
Schuppe, A. W., Borrajo-Calleja, G. M. & Buchwald, S. L. Enantioselective olefin hydrocyanation without cyanide. J. Am. Chem. Soc. 141, 18668–18672 (2019).
pubmed: 31687821
pmcid: 6945496
Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).
pubmed: 24500279
Jutand, A. Contribution of electrochemistry to organometallic catalysis. Chem. Rev. 108, 2300–2347 (2008).
pubmed: 18605756
Meyer, T. H., Finger, L. H., Gandeepan, P. & Ackermann, L. Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation. Trends Chem. 1, 63–76 (2019).
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 113230–113319 (2017).
Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).
pubmed: 28798126
Ye, K. et al. Anodically coupled electrolysis for the heterodifunctionalization of alkenes. J. Am. Chem. Soc. 140, 2438–2441 (2018).
pubmed: 29406758
Fu, N. et al. Mn-catalyzed electrochemical chloroalkylation of alkenes. ACS Catal. 9, 746–754 (2019).
pubmed: 31304049
Zhu, L. et al. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: use of solvent effects to enable anilide oxidation. Angew. Chem. Int. Ed. 55, 2226–2229 (2016).
Miranda, J. A., Wade, C. J. & Little, R. D. Indirect electroreductive cyclization and electrohydrocyclization using catalytic reduced nickel(II) salen. J. Org. Chem. 70, 8017–8026 (2005).
pubmed: 16277323
Shono, T. et al. Electroorganic chemistry. 118. Electroreductive intermolecular coupling of ketones with olefins. J. Org. Chem. 54, 6001–6003 (1989).
Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).
pubmed: 31026120
Nguyen, B. H., Redden, A. & Moeller, K. D. Sunlight, electrochemistry, and sustainable oxidation reactions. Green Chem. 16, 69–72 (2014).
Torii, S., Liu, P. & Tanaka, H. Electrochemical Os-catalyzed asymmetric dihydroxylation of olefins with Sharpless’ ligand. Chem. Lett. 24, 319–320 (1995).
Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).
pubmed: 27461578
pmcid: 5872827
Isayama, S. & Mukaiyama, T. Hydration of olefins with molecular oxygen and triethylsilane catalyzed by bis-(trifluoroacetylacetonato)cobalt(II). Chem. Lett. 18, 569–572 (1989).
Waser, J., Nambu, H. & Carreira, E. M. Cobalt-catalyzed hydroazidation of olefins: convenient access to alkyl azides. J. Am. Chem. Soc. 127, 8294–8295 (2005).
pubmed: 15941257
Renata, H., Zhou, Q. & Baran, P. S. Strategic redox relay enables a scalable synthesis of ouabagenin, a bioactive cardenolide. Science 339, 56–63 (2013).
Shigehisa, H. et al. Catalytic hydroamination of unactivated olefins using a Co catalyst for complex molecule synthesis. J. Am. Chem. Soc. 136, 13534–13537 (2014).
pubmed: 25236858
Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. Evidence for formation of a Co–H bond from (H
pubmed: 22897586
Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).
pubmed: 25398144
pmcid: 4277770
King, S. M., Ma, X. & Herzon, S. B. A method for the selective hydrogenation of alkenyl halides to alkyl halides. J. Am. Chem. Soc. 136, 6884–6887 (2014).
pubmed: 24824195
Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).
pubmed: 27701109
pmcid: 5488708
Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).
pubmed: 30183262
Gao, D.-W. et al. Direct access to versatile electrophiles via catalytic oxidative cyanation of alkenes. J. Am. Chem. Soc. 140, 8069–8073 (2018).
pubmed: 29894184
pmcid: 6033665
Green, S. A., Matos, J. L. M., Yagi, A. & Shenvi, R. A. Branch-selective hydroarylation: iodoarene–olefin cross-coupling. J. Am. Chem. Soc. 138, 12779–12782 (2016).
pubmed: 27623023
Discolo, C. A., Touney, E. E. & Pronin, S. V. Catalytic asymmetric radical–polar crossover hydroalkoxylation. J. Am. Chem. Soc. 141, 17527–17532 (2019).
pubmed: 31644273
Zhang, G., Fu, L., Chen, P., Zou, J. & Liu, G. Proton-coupled electron transfer enables tandem radical relay for asymmetric copper-catalyzed phosphinoylcyanation of styrenes. Org. Lett. 21, 5015–5020 (2019).
pubmed: 31247807
Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).
pubmed: 31498595
pmcid: 7023682
Shigehisa, H., Kikuchi, H. & Hiroya, K. Markovnikov-selective addition of fluorous solvents to unactivated olefins using a Co catalyst. Chem. Pharm. Bull. 64, 371–374 (2016).
Eichhorn, E., Rieker, A. & Speiser, B. The electrochemical oxidation of [Co
Merchant, R. R. et al. Divergent synthesis of pyrone diterpenes via radical cross coupling. J. Am. Chem. Soc. 140, 7462–7465 (2018).
pubmed: 29921130
pmcid: 6016063
Desimoni, G., Faita, G. & Jørgensen, K. A. Update 1 of: C
pubmed: 22077602
Zhu, R. & Buchwald, S. L. Versatile enantioselective synthesis of functionalized lactones via copper-catalyzed radical oxyfunctionalization of alkenes. J. Am. Chem. Soc. 137, 8069–8077 (2015).
pubmed: 26070105
pmcid: 4490856
Zhang, Z., Stateman, L. M. & Nagib, D. A. δ C–H (hetero)arylation via Cu-catalyzed radical relay. Chem. Sci. 10, 1207–1211 (2019).
pubmed: 30774920
Perrotta, D., Wang, M.-M. & Waser, J. Lewis acid catalyzed enantioselective desymmetrization of donor–acceptor meso-diaminocyclopropanes. Angew. Chem. Int. Ed. 57, 5120–5123 (2018).
Redden, A. & Moeller, K. D. Anodic coupling reactions: exploring the generality of Curtin–Hammett controlled reactions. Org. Lett. 13, 1678–1681 (2011).
pubmed: 21375258
Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 521–561 (2019).
He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp
pubmed: 22191666
Wayner, D. D. M., McPhee, D. J. & Griller, D. Oxidation and reduction potentials of transient free radicals. J. Am. Chem. Soc. 110, 132–137 (1988).
Bloom, J. W. G., Raju, R. K. & Wheeler, S. E. Physical nature of substituent effects in XH/π interactions. J. Chem. Theory Comput. 8, 3167–3174 (2012).
pubmed: 26605728
Fu, N., Sauer, G. S. & Lin, S. A general, electrocatalytic approach to the synthesis of vicinal diamines. Nat. Protoc. 13, 1725–1743 (2018).
pubmed: 30072721
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
pubmed: 18989472
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
pubmed: 16955487
Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).
Mardirossian, N. & Head-Gordon, M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 16, 9904–9924 (2014).
pubmed: 24430168
Rappoport, D. & Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 133, 134105 (2010).
pubmed: 20942521
Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
Parrish, R. M. et al. PSI4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput. 13, 3185–3197 (2017).
pubmed: 28489372
pmcid: 7495355
Behn, A., Zimmerman, P. M., Bell, A. T. & Head-Gordon, M. Efficient exploration of reaction paths via a freezing string method. J. Chem. Phys. 135, 224108 (2011).
pubmed: 22168681
Sharada, S. M., Zimmerman, P. M., Bell, A. T. & Head-Gordon, M. Automated transition state searches without evaluating the Hessian. J. Chem. Theory Comput. 8, 5166–5174 (2012).