NH
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
23
09
2019
accepted:
05
05
2020
pubmed:
1
7
2020
medline:
1
7
2020
entrez:
1
7
2020
Statut:
ppublish
Résumé
Living systems carry out the reduction of N
Identifiants
pubmed: 32601410
doi: 10.1038/s41557-020-0483-7
pii: 10.1038/s41557-020-0483-7
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
740-746Références
Haber, F. The production of ammonia from nitrogen and hydrogen. Naturwissenschaften 10, 1041–1049 (1922).
Schlögl, R. Catalytic synthesis of ammonia—a ‘never-ending story’? Angew. Chem. Int. Ed. 42, 2004–2008 (2003).
Kandemir, T., Schuster, M. E., Senyshyn, A., Behrens, M. & Schlögl, R. The Haber–Bosch process revisited: on the real structure and stability of ‘ammonia iron’ under working conditions. Angew. Chem. Int. Ed. 52, 12723–12726 (2013).
Tuczek, F. Synthetic vs biological nitrogen fixation. Nachr. Chem. 54, 1190–1194 (2006).
Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).
pubmed: 22096198
pmcid: 3800678
Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).
pubmed: 22096190
pmcid: 3268367
Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).
pubmed: 24467365
pmcid: 4012840
Walter, M. D. in Advances in Organometallic Chemistry Vol. 65 (ed. Pérez, P. J.) Ch. 5 (Academic Press, 2016).
Nishibayashi, Y. (ed.) Transition Metal–Dinitrogen Complexes (Wiley, 2019).
Légaré, M.-A. et al. Nitrogen fixation and reduction at boron. Science 359, 896–900 (2018).
pubmed: 29472479
Del Castillo, T. J., Thompson, N. B. & Peters, J. C. A synthetic single-site Fe nitrogenase: high turnover, freeze–quench
pubmed: 27026402
pmcid: 5079282
Kuriyama, S. et al. Direct transformation of molecular dinitrogen into ammonia catalyzed by cobalt dinitrogen complexes bearing anionic PNP pincer ligands. Angew. Chem. Int. Ed. 55, 14291–14295 (2016).
Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).
pubmed: 12843387
Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).
pubmed: 31019315
Falcone, M., Chatelain, L., Scopelliti, R., Zivkovic, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).
pubmed: 28726827
Falcone, M. & Mazzanti, M. Four-electron reduction and functionalization of N
pubmed: 29720308
Falcone, M., Poon, L. N., Fadaei Tirani, F. & Mazzanti, M. Reversible dihydrogen activation and hydride transfer by a uranium nitride complex. Angew. Chem. Int. Ed. 57, 3697–3700 (2018).
Pool, J. A., Bernskoetter, W. H. & Chirik, P. J. On the origin of dinitrogen hydrogenation promoted by [(η
pubmed: 15521731
Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).
pubmed: 14765191
Ohki, Y. & Fryzuk, M. D. Dinitrogen activation by group 4 metal complexes. Angew. Chem. Int. Ed. 46, 3180–3183 (2007).
Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 42, 127–133 (2009).
pubmed: 18803409
Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N
pubmed: 22076372
pmcid: 3218428
MacLeod, K. C. & Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 5, 559 (2013).
pubmed: 23787744
MacLeod, K. C., McWilliams, S. F., Mercado, B. Q. & Holland, P. L. Stepwise N–H bond formation from N
pubmed: 28066537
pmcid: 5207225
Lee, Y. et al. Dinitrogen activation upon reduction of a triiron(II) complex. Angew. Chem. Int. Ed. 54, 1499–1503 (2015).
Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).
pubmed: 24005414
pmcid: 3882122
Reiners, M., Baabe, D., Zaretzke, M.-K., Freytag, M. & Walter, M. D. Reversible dinitrogen binding to [Cp′Fe(NHC)] associated with an N
Ferreira, R. B. et al. Catalytic silylation of dinitrogen by a family of triiron complexes. ACS Catal. 8, 7208–7212 (2018).
pubmed: 30574427
pmcid: 6296492
Bozso, F., Ertl, G. & Weiss, M. Interaction of nitrogen with iron surfaces: II. Fe(110). J. Catal. 50, 519–529 (1977).
Somorjai, G. A. & Materer, N. Surface structures in ammonia synthesis. Top. Catal. 1, 215–231 (1994).
Spencer, N. D., Schoonmaker, R. C. & Somorjai, G. A. Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. J. Catal. 74, 129–135 (1982).
Weatherburn, M. W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971–974 (1967).
Chiang, K. P., Bellows, S. M., Brennessel, W. W. & Holland, P. L. Multimetallic cooperativity in activation of dinitrogen at iron–potassium sites. Chem. Sci. 5, 267–274 (2014).
Bhutto, S. M. & Holland, P. L. Dinitrogen activation and functionalization using β-diketiminate iron complexes. Eur. J. Inorg. Chem. 2019, 1861–1869 (2019).
pubmed: 31213945
pmcid: 6581468
Reiners, M. et al. Reactivity studies on [Cp′Fe(μ-I)]
pubmed: 30155215
pmcid: 6099922
Huang, Z., White, P. S. & Brookhart, M. Ligand exchanges and selective catalytic hydrogenation in molecular single crystals. Nature 465, 598–601 (2010).
pubmed: 20520710
Pike, S. D. et al. Synthesis and characterization of a rhodium(I) σ-alkane complex in the solid state. Science 337, 1648–1651 (2012).
pubmed: 22923436
Pike, S. D. et al. Solid-state synthesis and characterization of σ-alkane complexes, [Rh(L2)(η
Chadwick, F. M. et al. Selective C–H activation at a molecular rhodium sigma-alkane complex by solid/gas single-crystal to single-crystal H/D exchange. J. Am. Chem. Soc. 138, 13369–13378 (2016).
pubmed: 27631345
Chadwick, F. M. et al. A rhodium-pentane sigma-alkane complex: characterization in the solid state by experimental and computational techniques. Angew. Chem. Int. Ed. 55, 3677–3681 (2016).
Walter, M. D., Grunenberg, J. & White, P. S. Reactivity studies on [Cp′FeI]
Reiners, M. et al. Monomeric Fe(III) half-sandwich complexes [Cp′FeX
pubmed: 29924109
Moore, W. J. & Hummel, D. O. (eds) Physikalische Chemie 4th edn (Walter de Gruyter, 1986).
Argouarch, G., Hamon, P., Toupet, L., Hamon, J.-R. & Lapinte, C. [(η
Gütlich, P., Bill, E. & Trautwein, A. X. (eds) Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, 2011).
Spasyuk, D. M. et al. Facile hydrogen atom transfer to iron(III) imido radical complexes supported by a dianionic pentadentate ligand. Chem. Sci. 7, 5939–5944 (2016).
pubmed: 30034736
pmcid: 6024611
Brown, S. D., Mehn, M. P. & Peters, J. C. Heterolytic H
pubmed: 16173733
Kefalidis, C. E. et al. Can a pentamethylcyclopentadienyl ligand act as a proton-relay in f-element chemistry? Insights from a joint experimental/theoretical study. Dalton Trans. 44, 2575–2587 (2015).
pubmed: 25340677
Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N
pubmed: 28386599
pmcid: 5364448
Chalkley, M. J., Oyala, P. H. & Peters, J. C. Cp* noninnocence leads to a remarkably weak C–H bond via metallocene protonation. J. Am. Chem. Soc. 141, 4721–4729 (2019).
pubmed: 30789720
Drover, M. W., Schild, D. J., Oyala, P. H. & Peters, J. C. Snapshots of a migrating H-atom: characterization of a reactive iron(III) indenide hydride and its nearly isoenergetic ring-protonated iron(I) isomer. Angew. Chem. Int. Ed. 58, 15504–15511 (2019).
Walter, M. D. & White, P. S. [Cp′FeI]
Schwindt, M. A., Lejon, T. & Hegedus, L. S. Improved synthesis of (aminocarbene)chromium(0) complexes with use of C8K-generated Cr(CO)
Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).
Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).
Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).
pubmed: 16188474
Walter, M. D., Schultz, M. & Andersen, R. A. Weak paramagnetism in compounds of the type Cp′
Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).
Brand, R. A. WinNormos-for-Igor v. 3.0 (Wissenschaftliche Elektronik GmbH, 2009).
Gaussian 16, Revisions B.01v and B.01 (Gaussian Inc., 2016).
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Burke, K., Perdew, J. P. & Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions (eds Dobson, J. F., Vignale, G. et al.) Ch. II (Plenum, 1997).
Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy‐adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872 (1987).
Ehlers, A. W. et al. A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au. Chem. Phys. Lett. 208, 111–114 (1993).
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Acc. 28, 213–222 (1973).
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).
Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).
Walter, M. D. & White, P. S. [{Cp′Fe(μ-OH)}
pubmed: 22699682