Exchange magnetostriction in two-dimensional antiferromagnets.


Journal

Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473

Informations de publication

Date de publication:
Dec 2020
Historique:
received: 25 01 2020
accepted: 21 05 2020
pubmed: 1 7 2020
medline: 1 7 2020
entrez: 1 7 2020
Statut: ppublish

Résumé

Magnetostriction, coupling between the mechanical and magnetic degrees of freedom, finds a variety of applications in magnetic actuation, transduction and sensing

Identifiants

pubmed: 32601481
doi: 10.1038/s41563-020-0712-x
pii: 10.1038/s41563-020-0712-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1295-1299

Références

Joule, J. P. On the effects of magnetism upon the dimensions of iron and steel bars. Philos. Mag. 30, 76–87 (1847).
du Trémolet de Lacheisserie, E. Magnetostriction: Theory and Application of Magnetoelasticity (CRC Press, 1993).
Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).
doi: 10.1038/s42254-019-0110-y
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
doi: 10.1126/science.aav4450
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
doi: 10.1038/s41565-019-0438-6
Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
doi: 10.1038/s41586-018-0631-z
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
doi: 10.1126/science.aar4851
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).
doi: 10.1126/science.aar3617
Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).
doi: 10.1021/acs.nanolett.8b01552
Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI
doi: 10.1038/s41467-018-04953-8
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
doi: 10.1038/s41563-018-0040-6
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI
doi: 10.1038/s41565-018-0135-x
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI
doi: 10.1038/s41565-018-0121-3
Jin, C. et al. Imaging and control of critical spin fluctuations in two-dimensional magnets. Nat. Mater. https://doi.org/10.1038/s41563-020-0706-8 (2020).
Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).
doi: 10.1038/s41565-018-0186-z
Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).
doi: 10.1038/s41928-019-0232-3
Bunch, J. S. et al. Electromechanical Resonators from Graphene Sheets. Science 315, 490–493 (2007).
doi: 10.1126/science.1136836
Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).
doi: 10.1038/nnano.2009.267
Lee, J. et al. Electrically tunable single- and few-layer MoS
doi: 10.1126/sciadv.aao6653
Frisenda, R. et al. Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl. 1, 10 (2017).
doi: 10.1038/s41699-017-0013-7
Kim, H. H. et al. Magneto‐memristive switching in a 2D layer antiferromagnet. Adv. Mater. 32, 1905433 (2020).
doi: 10.1002/adma.201905433
Kittel, C. Model of exchange-inversion magnetization. Phys. Rev. 120, 335–342 (1960).
doi: 10.1103/PhysRev.120.335
Swoboda, T. J., Cloud, W. H., Bither, T. A., Sadler, M. S. & Jarrett, H. S. Evidence for an antiferromagnetic-ferrimagnetic transition in Cr-modified Mn
doi: 10.1103/PhysRevLett.4.509
Levitin, R. Z. & Ponomarev, K. Magnetostriction of the metamagnetic iron-rhodium alloy. Sov. Phys. JETP 23.6, 984–985 (1966).
Hall, R. C. Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe. J. Appl. Phys. 30, 816–819 (1959).
doi: 10.1063/1.1735247
Šiškins, M. et al. Magnetic and electronic phase transitions probed by nanomechanical resonators. Nat. Commun. 11, 2698 (2020).
doi: 10.1038/s41467-020-16430-2
Storch, I. R. et al. Young’s modulus and thermal expansion of tensioned graphene membranes. Phys. Rev. B 98, 085408 (2018).
doi: 10.1103/PhysRevB.98.085408
Shin, K.-H., Inoue, M. & Arai, K.-I. Strain sensitivity of highly magnetostrictive amorphous films for use in microstrain sensors. J. Appl. Phys. 85, 5465–5467 (1999).
doi: 10.1063/1.369977
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
doi: 10.1126/science.1157996
Liu, J., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).
doi: 10.1039/C5CP04835D
Zheng, F. et al. Tunable spin states in the two-dimensional magnet CrI
doi: 10.1039/C8NR03230K
Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe
doi: 10.1063/1.4940982

Auteurs

Shengwei Jiang (S)

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.

Hongchao Xie (H)

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
Department of Physics, Penn State University, University Park, PA, US.

Jie Shan (J)

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA. jie.shan@cornell.edu.
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. jie.shan@cornell.edu.
Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA. jie.shan@cornell.edu.

Kin Fai Mak (KF)

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA. kinfai.mak@cornell.edu.
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. kinfai.mak@cornell.edu.
Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA. kinfai.mak@cornell.edu.

Classifications MeSH