Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease.
Mendelian randomization
Parkinson disease
Polygenic risk
Transcriptome community maps
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
05
05
2020
accepted:
14
06
2020
revised:
07
06
2020
pubmed:
1
7
2020
medline:
7
8
2021
entrez:
1
7
2020
Statut:
ppublish
Résumé
Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological processes underlying PD using the largest currently available cohorts of genetic and gene expression data from International Parkinson's Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership-Parkinson's disease initiative (AMP-PD), among other sources. We applied large-scale gene-set specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk focusing on publicly annotated gene sets representative of curated pathways. We nominated specific molecular sub-processes underlying protein misfolding and aggregation, post-translational protein modification, immune response, membrane and intracellular trafficking, lipid and vitamin metabolism, synaptic transmission, endosomal-lysosomal dysfunction, chromatin remodeling and apoptosis mediated by caspases among the main contributors to PD etiology. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data and found evidence for a burden of rare damaging alleles in a range of processes, including neuronal transmission-related pathways and immune response. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and neural progenitors. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of PD patients, which revealed functional enrichment in inflammatory signaling pathways, cell death machinery related processes, and dysregulation of mitochondrial homeostasis. Our analyses highlight several specific promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.
Identifiants
pubmed: 32601912
doi: 10.1007/s00401-020-02181-3
pii: 10.1007/s00401-020-02181-3
pmc: PMC8096770
mid: NIHMS1608166
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
341-358Subventions
Organisme : Medical Research Council
ID : MR/K01417X/1
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : U01 NS100603
Pays : United States
Organisme : NCRR NIH HHS
ID : UL1 RR025774
Pays : United States
Organisme : Medical Research Council
ID : MR/N008324/1
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : Z01 AG000949
Pays : United States
Organisme : NINDS NIH HHS
ID : U24 NS072026
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG019610
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS115144
Pays : United States
Organisme : NIA NIH HHS
ID : Z01-AG000949-0
Pays : United States
Organisme : Medical Research Council
ID : G0802462
Pays : United Kingdom
Organisme : Intramural NIH HHS
ID : Z01 ES101986
Pays : United States
Organisme : Intramural NIH HHS
ID : Z99 AG999999
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Sci Transl Med. 2010 Oct 6;2(52):52ra73
pubmed: 20926834
Bioinformatics. 2011 Jun 15;27(12):1739-40
pubmed: 21546393
Gigascience. 2015 Feb 25;4:7
pubmed: 25722852
Hum Mol Genet. 2011 Oct 15;20(R2):R158-62
pubmed: 21875901
Nucleic Acids Res. 2010 Sep;38(16):e164
pubmed: 20601685
Bioinformatics. 2016 May 1;32(9):1423-6
pubmed: 27153000
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Nat Rev Neurosci. 2017 May 18;18(6):347-361
pubmed: 28515491
Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33
pubmed: 25431634
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9747-52
pubmed: 20457924
Am J Hum Genet. 2012 Aug 10;91(2):224-37
pubmed: 22863193
Nat Genet. 2020 May;52(5):482-493
pubmed: 32341526
Nat Neurosci. 2014 Mar;17(3):357-66
pubmed: 24464041
Nat Genet. 2016 May;48(5):481-7
pubmed: 27019110
Bioinformatics. 2015 May 1;31(9):1466-8
pubmed: 25550326
Cell. 2018 Aug 9;174(4):999-1014.e22
pubmed: 30096314
Nat Genet. 2018 Jun;50(6):825-833
pubmed: 29785013
Lancet Neurol. 2019 Dec;18(12):1091-1102
pubmed: 31701892
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198
pubmed: 31066453
Nat Commun. 2018 Mar 2;9(1):918
pubmed: 29500431
Nat Genet. 2009 Dec;41(12):1303-7
pubmed: 19915576
Am J Hum Genet. 2011 Jan 7;88(1):76-82
pubmed: 21167468
Lancet Neurol. 2020 Feb;19(2):170-178
pubmed: 31521533
Neurobiol Dis. 2020 Apr;137:104782
pubmed: 31991247
PLoS Genet. 2010 May 13;6(5):e1000952
pubmed: 20485568
Nature. 2017 Jun 29;546(7660):656-661
pubmed: 28636593
NPJ Parkinsons Dis. 2019 Apr 17;5:6
pubmed: 31016231
PLoS Biol. 2010 Jan 26;8(1):e1000298
pubmed: 20126261
Nature. 2006 Oct 19;443(7113):787-95
pubmed: 17051205
Brain. 2017 Dec 1;140(12):3191-3203
pubmed: 29140481
Nat Genet. 2017 Oct;49(10):1511-1516
pubmed: 28892059