Is Small Fiber Neuropathy Induced by Gadolinium-Based Contrast Agents?
Journal
Investigative radiology
ISSN: 1536-0210
Titre abrégé: Invest Radiol
Pays: United States
ID NLM: 0045377
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
pubmed:
1
7
2020
medline:
6
5
2021
entrez:
1
7
2020
Statut:
ppublish
Résumé
In recent years, complaints of patients about burning pain in arms and legs after the injection of gadolinium-based contrast agents (GBCAs) have been reported. In the current study, we investigated changes of small fibers in the epidermis as a potential cause of the patient complaints in a mouse model. Six groups of 8 mice were intravenously injected with either a macrocyclic GBCA (gadoteridol, gadoterate meglumine, gadobutrol), a linear GBCA (gadodiamide or gadobenate dimeglumine) (1 mmol/kg body weight), or saline (NaCl 0.9%). Four weeks after injection, animals were euthanized, and footpads were assessed using immunofluorescence staining. Intraepidermal nerve fiber density (IENFD) was calculated, and the median number of terminal axonal swellings (TASs) per IENFD was determined. Nonparametric Wilcoxon signed-rank test revealed significantly lower IENFDs for all GBCAs compared with the control group (P < 0.0001) with the linear GBCAs showing significantly lower IENFDs than the macrocyclic GBCAs (P < 0.0001). The linear GBCAs presented significantly more TAS per IENFD than the control group (P < 0.0001), whereas no significant increase of TAS per IENFD compared with the control group was found for macrocyclic GBCAs (P < 0.237). It is unclear whether or at what dosage the decrease of IENFDs and the increase of TAS per IENFD found in the current animal model will appear in humans and if it translates into clinical symptoms. However, given the highly significant findings of the current study, more research in this field is required.
Identifiants
pubmed: 32604384
doi: 10.1097/RLI.0000000000000677
pii: 00004424-202008000-00001
doi:
Substances chimiques
Contrast Media
0
Gadolinium
AU0V1LM3JT
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
473-480Références
Runge VM. Commentary on T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol. 2015;50:481–482.
Matsumura T, Hayakawa M, Shimada F, et al. Safety of gadopentetate dimeglumine after 120 million administrations over 25 years of clinical use. Magn Reson Med Sci. 2013;12:297–304.
Idee JM, Port M, Raynal I, et al. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol. 2006;20:563–576.
Hao D, Ai T, Goerner F, et al. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36:1060–1071.
Idee JM, Port M, Robic C, et al. Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging. 2009;30:1249–1258.
Frenzel T, Lengsfeld P, Schirmer H, et al. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol. 2008;43:817–828.
Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–1108.
Khurana A, Runge VM, Narayanan M, et al. Nephrogenic systemic fibrosis: a review of 6 cases temporally related to gadodiamide injection (Omniscan). Invest Radiol. 2007;42:139–145.
Thomsen HS, Morcos SK, Almen T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol. 2013;23:307–318.
Gupta A, Shamseddin MK, Khaira A. Pathomechanisms of nephrogenic systemic fibrosis: new insights. Clin Exp Dermatol. 2011;36:763–778.
Endrikat J, Dohanish S, Schleyer N, et al. 10 years of Nephrogenic systemic fibrosis: a comprehensive analysis of nephrogenic systemic fibrosis reports received by a pharmaceutical company from 2006 to 2016. Invest Radiol. 2018;53:541–550.
Wang Y, Alkasab TK, Narin O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260:105–111.
Bennett CL, Qureshi ZP, Sartor AO, et al. Gadolinium-induced nephrogenic systemic fibrosis: the rise and fall of an iatrogenic disease. Clin Kidney J. 2012;5:82–88.
Huckle JE, Altun E, Jay M, et al. Gadolinium deposition in humans: when did we learn that gadolinium was deposited in vivo? Invest Radiol. 2016;51:236–240.
Kanda T, Ishii K, Kawaguchi H, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–841.
Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–791.
Deike-Hofmann K, Reuter J, Haase R, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Invest Radiol. 2019;54:229–237.
Radbruch A. Gadolinium deposition in the brain: we need to differentiate between chelated and dechelated gadolinium. Radiology. 2018;288:434–435.
Robert P, Fingerhut S, Factor C, et al. One-year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model. Radiology. 2018;288:424–433.
Radbruch A, Roberts DR, Clement O, et al. Chelated or dechelated gadolinium deposition. Lancet Neurol. 2017;16:955.
Radbruch A, Richter H, Fingerhut S, et al. Gadolinium deposition in the brain in a large animal model: comparison of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 2019;54:531–536.
Bower DV, Richter JK, von Tengg-Kobligk H, et al. Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic stability of the agent. Invest Radiol. 2019;54:453–463.
Radbruch A. How should we measure neurotoxicity of gadolinium-based contrast agents? Invest Radiol. 2019;54:464–465.
Semelka RC, Ramalho J, Vakharia A, et al. Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging. 2016;34:1383–1390.
McDonald RJ, Levine D, Weinreb J, et al. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018;289:517–534.
Semelka RC. Available at: https://www.richardsemelka.com/single-post/2019/05/21/Gadolinium-Deposition-Disease-Revised-Symptom-Description-May-2019. 2019.
Terkelsen AJ, Karlsson P, Lauria G, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 2017;16:934–944.
Lauria G, Hsieh ST, Johansson O, et al; European Federation of Neurological Societies; Peripheral Nerve Society. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the peripheral nerve society. Eur J Neurol. 2010;17:903–912, e44–e49.
Guidelines A. AVMA Guidelines for the Euthanasia of Animals. 2013. Available at: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf.
Lohrke J, Frisk AL, Frenzel T, et al. Histology and gadolinium distribution in the rodent brain after the Administration of Cumulative High Doses of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 2017;52:324–333.
Pietsch H, Lengsfeld P, Jost G, et al. Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents. Eur Radiol. 2009;19:1417–1424.
Sutresno A, Haryanto F, Viridi S, et al. Diffusion and Interaction bewteen ion Ca2+ and ion Gd3+ in a Model Synapse: A Monte Carlo Study. Journal of Physics: Conference Series. 2019.
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661.
Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials–revisiting body surface area scaling. FASEB J. 2015;29:1629–1634.
Sopacua M, Hoeijmakers JGJ, Merkies ISJ, et al. Small-fiber neuropathy: expanding the clinical pain universe. J Peripher Nerv Syst. 2019;24:19–33.
Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci Lett. 2015;596:90–107.
Eldridge S, Guo L, Hamre J 3rd. A comparative review of chemotherapy-induced peripheral neuropathy in in vivo and in vitro models. Toxicol Pathol. 2019;48:190–201.
Ko MH, Chen WP, Hsieh ST. Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis. 2002;11:155–165.
Radbruch A, Weberling LD, Kieslich PJ, et al. Response. Radiology. 2016;279:324–325.
Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–1354.
Kleesiek J, Morshuis JN, Isensee F, et al. Can virtual contrast enhancement in brain MRI replace gadolinium?: a feasibility study. Invest Radiol. 2019;54:653–660.
Paech D, Schuenke P, Koehler C, et al. T1ρ-weighted dynamic glucose-enhanced MR imaging in the human brain. Radiology. 2017;285:914–922.
Schuenke P, Paech D, Koehler C, et al. Fast and quantitative T1ρ-weighted dynamic glucose enhanced MRI. Sci Rep. 2017;7:42093.