Stretchable and Robust Candle-Soot Nanoparticle-Polydimethylsiloxane Composite Films for Laser-Ultrasound Transmitters.
carbon nanoparticles
functional nanomaterials
nanocomposite
photoacoustic
stretchable devices
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
28 Jun 2020
28 Jun 2020
Historique:
received:
14
05
2020
revised:
21
06
2020
accepted:
26
06
2020
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
2
7
2020
Statut:
epublish
Résumé
Considerable attention has been devoted to the development of nanomaterial-based photoacoustic transmitters for ultrasound therapy and diagnosis applications. Here, we fabricate and characterize candle-soot nanoparticles (CSNPs) and polydimethylsiloxane (PDMS) composite-based photoacoustic transmitters, based on a solution process, not just to achieve high-frequency and high-amplitude pressure outputs, but also to develop physically stretchable ultrasound transmitters. Owing to its non-porous and non-agglomerative characteristics, the composite exhibits unique photo-thermal and mechanical properties. The output pressure amplitudes from CSNPs-PDMS composites were 20-26 dB stronger than those of Cr film, used as a reference. The proposed transmitters also offered a center frequency of 2.44-13.34 MHz and 6-dB bandwidths of 5.80-13.62 MHz. Importantly, we characterize the mechanical robustness of CSNPs-PDMS quantitatively, by measuring laser-damage thresholds, to evaluate the upper limit of laser energy that can be ultimately used as an input, i.e., proportional to the maximum-available pressure output. The transmitters could endure an input laser fluence of 54.3-108.6 mJ·cm
Identifiants
pubmed: 32605328
pii: mi11070631
doi: 10.3390/mi11070631
pmc: PMC7407116
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Research Foundation of Korea
ID : NRF-2017R1D1A1B03035925
Organisme : Ministry of Science and ICT, South Korea
ID : IITP-2020-2018-0-01798
Références
IEEE Nanotechnol Mag. 2019 Jun;13(3):13-28
pubmed: 31178946
Nanoscale. 2015 Mar 14;7(10):4400-5
pubmed: 25685982
Science. 2014 Apr 4;344(6179):70-4
pubmed: 24700852
Nanoscale. 2015 Sep 14;7(34):14460-8
pubmed: 26255948
ACS Nano. 2011 May 24;5(5):4007-13
pubmed: 21466218
Nature. 2018 Sep;561(7724):516-521
pubmed: 30258137
Sci Rep. 2012;2:989
pubmed: 23251775
Appl Phys Lett. 2017 May 29;110(22):223701
pubmed: 28652642
ACS Nano. 2016 Aug 23;10(8):7901-6
pubmed: 27463116
Nat Nanotechnol. 2014 May;9(5):397-404
pubmed: 24681776
Sci Adv. 2018 Oct 19;4(10):eaau2426
pubmed: 30345362
Nat Commun. 2014 Feb 25;5:3329
pubmed: 24569383
Nat Commun. 2017 Nov 21;8(1):1664
pubmed: 29162854
Science. 2012 Jan 6;335(6064):67-70
pubmed: 22144464
Adv Mater. 2013 May 21;25(19):2707-12
pubmed: 23568566
Prog Mater Sci. 2015 Mar 1;68:1-66
pubmed: 25530641
Sci Adv. 2016 Apr 15;2(4):e1501856
pubmed: 27152354
Appl Phys Lett. 2010 Dec 6;97(23):234104
pubmed: 21200445
Nat Nanotechnol. 2010 Aug;5(8):574-8
pubmed: 20562870
Adv Mater. 2017 Oct;29(38):
pubmed: 28833644
Chem Commun (Camb). 2011 Apr 28;47(16):4700-2
pubmed: 21416085
Science. 2011 Aug 12;333(6044):838-43
pubmed: 21836009
Opt Express. 2010 Mar 15;18(6):6347-59
pubmed: 20389658
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Dec;55(12):2719-25
pubmed: 19126497
Adv Mater. 2020 Apr;32(15):e1902743
pubmed: 31408223
Nat Nanotechnol. 2016 Jun;11(6):566-572
pubmed: 26999482
Nat Mater. 2011 Jun;10(6):424-8
pubmed: 21478883
Nanotechnology. 2019 Mar 29;30(13):132001
pubmed: 30605897
Opt Express. 2018 Aug 20;26(17):21700-21711
pubmed: 30130872
Nature. 2013 Jul 25;499(7459):458-63
pubmed: 23887430
Nanotechnology. 2018 Nov 9;29(45):45LT02
pubmed: 30156561
Nature. 2009 Feb 5;457(7230):706-10
pubmed: 19145232
Adv Mater. 2018 Jan;30(1):
pubmed: 29068560
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Nov;48(6):1669-80
pubmed: 11800130