CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
inhibitory interneuron
neural circuits
olfactory bulb
projection neurons
synaptic plasticity
synaptic transmission
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
05 08 2020
05 08 2020
Historique:
received:
01
04
2020
revised:
06
05
2020
accepted:
21
05
2020
pubmed:
2
7
2020
medline:
5
1
2021
entrez:
2
7
2020
Statut:
ppublish
Résumé
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.
Identifiants
pubmed: 32605937
pii: JNEUROSCI.0769-20.2020
doi: 10.1523/JNEUROSCI.0769-20.2020
pmc: PMC7406279
doi:
Substances chimiques
Cholecystokinin
9011-97-6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
6189-6206Subventions
Organisme : NIDCD NIH HHS
ID : R01 DC014447
Pays : United States
Informations de copyright
Copyright © 2020 the authors.
Références
J Neurophysiol. 2012 Aug 1;108(3):782-93
pubmed: 22592311
J Neurophysiol. 2001 Dec;86(6):2986-97
pubmed: 11731555
Neuron. 2012 Oct 4;76(1):98-115
pubmed: 23040809
Eur J Neurosci. 2011 Sep;34(5):787-99
pubmed: 21819462
J Neurophysiol. 2017 Oct 1;118(4):2034-2051
pubmed: 28724776
J Neurophysiol. 2001 May;85(5):2213-23
pubmed: 11353036
J Neurosci. 2007 May 23;27(21):5621-32
pubmed: 17522307
Neuroscience. 2019 Nov 1;419:1-4
pubmed: 31487544
Behav Biol. 1975 Jul;14(3):295-308
pubmed: 1137549
J Neurosci. 2004 Mar 24;24(12):3023-30
pubmed: 15044541
J Neurosci. 2011 Jul 20;31(29):10615-26
pubmed: 21775605
Neuron. 2017 Jan 4;93(1):33-47
pubmed: 27989459
J Comp Neurol. 1985 Sep 22;239(4):373-83
pubmed: 2864364
J Neurosci. 1999 Oct 15;19(20):8808-17
pubmed: 10516300
J Comp Neurol. 1985 May 22;235(4):503-18
pubmed: 2582006
Front Neural Circuits. 2010 Sep 23;4:
pubmed: 20941380
Eur J Neurosci. 2006 Aug;24(4):1124-36
pubmed: 16930438
J Neurosci. 2006 Nov 1;26(44):11257-66
pubmed: 17079653
Exp Neurol. 1966 Jan;14(1):44-56
pubmed: 5900523
J Neurosci. 2013 Jan 23;33(4):1552-63
pubmed: 23345229
Neuron. 2003 Apr 24;38(2):265-76
pubmed: 12718860
Cell. 1996 Nov 15;87(4):675-86
pubmed: 8929536
J Neurophysiol. 1989 Jul;62(1):96-108
pubmed: 2754484
J Neurosci. 2012 Jun 6;32(23):7970-85
pubmed: 22674272
Science. 2009 May 22;324(5930):1080-4
pubmed: 19389999
Curr Opin Neurobiol. 2010 Apr;20(2):172-6
pubmed: 20307966
J Neurosci. 2009 Oct 28;29(43):13454-64
pubmed: 19864558
J Neurosci. 2008 Jun 18;28(25):6360-71
pubmed: 18562606
J Comp Neurol. 1983 Sep 20;219(3):339-55
pubmed: 6619342
Chem Senses. 2013 Jul;38(6):459-74
pubmed: 23761680
J Comp Neurol. 1982 Jul 10;208(4):419-30
pubmed: 7119169
Physiol Rev. 2005 Jan;85(1):281-317
pubmed: 15618482
Annu Rev Physiol. 1999;61:521-42
pubmed: 10099700
Neuron. 2015 Jul 1;87(1):193-207
pubmed: 26139373
J Neurosci. 2008 Oct 8;28(41):10311-22
pubmed: 18842890
J Neurosci. 2016 Sep 14;36(37):9604-17
pubmed: 27629712
Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):319-24
pubmed: 11120888
J Neurosci. 2013 Feb 13;33(7):2916-26
pubmed: 23407950
J Neurophysiol. 2012 Jan;107(1):473-83
pubmed: 22013233
Nature. 2002 Sep 19;419(6904):296-300
pubmed: 12239567
J Comp Neurol. 1994 Aug 22;346(4):541-58
pubmed: 7983243
J Neurosci. 2009 Feb 18;29(7):2043-52
pubmed: 19228958
J Physiol. 2003 Jan 15;546(Pt 2):363-74
pubmed: 12527724
J Comp Psychol. 1983 Mar;97(1):12-23
pubmed: 6872503
Brain Res Bull. 1994;35(2):119-23
pubmed: 7953767
Neuron. 2012 Jul 26;75(2):320-9
pubmed: 22841316
Physiol Behav. 1987;41(1):59-69
pubmed: 3685154
Cell. 1994 Dec 30;79(7):1245-55
pubmed: 7528109
Cell. 1994 Dec 16;79(6):981-91
pubmed: 8001145
J Neurosci. 2004 Jul 28;24(30):6676-85
pubmed: 15282270
J Neurosci. 2015 Mar 11;35(10):4319-31
pubmed: 25762678
J Neurosci. 2010 Jan 20;30(3):1185-96
pubmed: 20089927
Front Neural Circuits. 2015 Nov 05;9:72
pubmed: 26594154
J Comp Neurol. 1983 Jun 20;217(2):227-37
pubmed: 6886054
J Neurophysiol. 1986 May;55(5):1076-90
pubmed: 3012009
J Cell Sci. 1970 Nov;7(3):631-51
pubmed: 5492279
J Neurophysiol. 2000 Sep;84(3):1194-203
pubmed: 10979995
Neuron. 2016 Jul 20;91(2):397-411
pubmed: 27346531
Science. 1972 Jan 7;175(4017):84-7
pubmed: 5008584
Cereb Cortex. 2004 Oct;14(10):1122-33
pubmed: 15115742
eNeuro. 2019 Jun 27;6(3):
pubmed: 31209151
J Neurophysiol. 2009 Apr;101(4):1988-2001
pubmed: 19225171
J Comp Neurol. 1984 Jul 1;226(3):346-56
pubmed: 6747027
J Comp Neurol. 2007 Apr 20;501(6):825-36
pubmed: 17311323
Physiol Rev. 1972 Oct;52(4):864-917
pubmed: 4343762
Nat Neurosci. 2005 Mar;8(3):354-64
pubmed: 15696160
J Cell Sci. 1970 Jul;7(1):125-55
pubmed: 5476853
J Physiol. 2018 Jun;596(11):2185-2207
pubmed: 29572837
J Neurosci. 2004 Feb 4;24(5):1190-9
pubmed: 14762137
J Comp Neurol. 1984 Jun 1;225(4):511-26
pubmed: 6203939
Nature. 2003 Dec 11;426(6967):623-9
pubmed: 14668854
Brain Res. 1977 Jun 24;129(1):152-7
pubmed: 68803
Neurosci Res. 2015 Apr;93:144-57
pubmed: 25240284
Sci Rep. 2018 May 16;8(1):7625
pubmed: 29769664
Nat Neurosci. 2007 May;10(5):631-9
pubmed: 17450136
J Cell Sci. 1971 Sep;9(2):305-45
pubmed: 4108056
Prog Brain Res. 2014;208:223-51
pubmed: 24767485
J Neurophysiol. 1990 Sep;64(3):932-47
pubmed: 2230935
J Neurobiol. 1996 May;30(1):123-76
pubmed: 8727988
J Neurophysiol. 2008 Mar;99(3):1559-64
pubmed: 18216231
J Neurosci. 2008 Feb 13;28(7):1625-39
pubmed: 18272683
Neuron. 1999 Jun;23(2):385-97
pubmed: 10399943
Biophys J. 2009 Mar 4;96(5):1803-14
pubmed: 19254539
Front Neural Circuits. 2014 Jul 30;8:88
pubmed: 25126057
J Physiol. 2017 Oct 1;595(19):6349-6362
pubmed: 28791713
Neuron. 2011 Sep 22;71(6):962-73
pubmed: 21943596
J Neurochem. 2002 Jul;82(2):295-304
pubmed: 12124430
Brain Res. 1978 Dec 22;159(1):17-28
pubmed: 728793
Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1230-4
pubmed: 11158622
J Neurosci. 2013 Jan 30;33(5):1790-6
pubmed: 23365218
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6728-32
pubmed: 1975695
Nat Neurosci. 2014 Sep;17(9):1208-16
pubmed: 24997762